Abstract:
An array substrate of a liquid crystal display includes data lines; scanning lines configured to cross with the data lines; a test line provided outside a display region of the array substrate for test of the array substrate; and a repair line provided outside the display region for repair of a defective data line. The test line is configured to be electrically isolated from the repair line when the repair is not carried out and is electrically connected to the repair line and the defective data line when the repair is performed. A method of repairing the array substrate and a liquid crystal display using the array substrate are also provided. According to the invention, the test line can be used as a part of a repair circuit for repair of the data lines, thereby greatly decreasing non-display area.
Abstract:
An array substrate of liquid crystal display having a novel pixel structure comprises data lines; scanning lines, the scanning lines and the data lines being arranged across each other and defining a number of pixel regions; a dielectric layer disposed on the scanning lines; pixel electrodes in the pixel regions; storage capacitor electrode lines for forming storage capacitors together with the pixel electrodes, and a conductive section disposed on the dielectric layer above a part of a scanning line that corresponds to a pixel region and in electrical communication with the storage capacitor electrode lines. According to the invention, the disposition of a conduction section can significantly reduce the electric field effect between scanning lines and common transparent electrodes. The invention can decrease the inductive electric charge, avoid the influence of the inductive electric charge on the arrangement of liquid crystal molecules, and thus markedly improve the display quality.
Abstract:
A liquid crystal display having a repair circuit structure and an array substrate of the liquid crystal display are provided. Each of the repair lines of the repair circuit comprises a front repair line portion arranged to cross with a front data line portion in a substantially perpendicular manner, an end repair line portion arranged to cross with an end data line portion in a substantially perpendicular manner, and an intermediate repair line portion connecting the front and end repair line portions. At least two repair lines in the end repair line portion are positioned in different layers so that a parasitic capacitance between respective repair lines in the repair circuit structure can be reduced and signal transmission quality can be ensured.
Abstract:
A liquid crystal display having a repair line structure and an array substrate of the liquid crystal display are provided. The repair line comprises a front repair line portion arranged to at least partially overlap a front portion of a first signal line, an end repair line portion arranged to at least partially overlap an end portion of the first signal line, and an intermediate repair line portion electrically connecting the front and end repair line portions. The front repair line portion comprises at least a first signal connection line and an external line which are electrically isolated when the repair line has not been used to repair a defect in the first signal line.
Abstract:
Fringe field switching mode liquid crystal display (FFS LCD) devices are disclosed. A first substrate is disposed opposing a second substrate with a gap therebetween. A liquid crystal layer is interposed between the first and the second substrate. A gate line and data lines are formed on the first substrate in a matrix configuration and defining pixel areas. A counter electrode is disposed on each pixel area of the first substrate. A pixel electrode is disposed above the counter electrode with an insulating layer therebetween. The pixel electrode includes a plurality of parallel electrodes. Each electrode includes a first segment, a second segment, and a third segment, wherein the first segment has an included angle θ from the horizontal direction, the second segment has an included angle φ from the horizontal direction, and the first segment has an included angle θ from the horizontal direction.
Abstract:
A pixel structure and repair method thereof. A through hole is formed in the common line. When the source/drain electrode of a thin film transistor is not electrically connected to a pixel electrode due to a polymer residue remaining in a contact hole, a first laser beam passes through the through hole to weld the source/drain electrode and the pixel electrode. The defective pixel can be thus repaired to display the original color. In addition, if the defective pixel fails due to a defective thin film transistor, the invention irradiates a second laser beam to sever the source/drain electrode such that the defective thin film transistor is not electrically connected to the pixel electrode. The defective pixel can be thus repaired to a dark point.
Abstract:
A liquid crystal display includes a glass substrate, a plurality of pixels formed on the glass substrate for displaying an image according to gamma voltages, a voltage divider installed on a printed circuit board, the voltage divider including a resistor and a thermistor coupled in series with the resistor for generating gamma voltages for the pixels, and a driver IC chip coupled to the pixels and the voltage divider for controlling the voltage divider to generate gamma voltages to the pixels.
Abstract:
The screen of a liquid crystal display is first divided into a compensation portion, a compensation transition portion and a non-compensation portion in a sequence arranged along the scanning line. Then storage capacitor areas of the pixels in the non-compensation portion are made equal, whereas the difference between the storage capacitor area of the pixel in the compensation portion and that in the non-compensation portion is set to one constant basic compensation area. Afterward, the average of the storage capacitor areas of the pixels on each data line in the compensation transition portion progressively varies along the scanning line, where the average is greater than or equal to any of the storage capacitor areas of the pixels in the non-compensation portion. The direction of the scanning line is designated as either the direction in which scanning signals are transmitted or the direction opposite thereto.
Abstract:
According to the brightness distribution of a previous frame, the driving current of the backlight module dynamically varies. When the concentration of the brightness distribution is toward high brightness, the backlight module increases its luminous intensity. On the contrary, when the concentration of the brightness distribution is toward low brightness, the backlight module decreases its luminous intensity. We can set the luminous modulation period of the backlight module to be synchronized with a vertical scanning period or several vertical scanning periods.
Abstract:
A thin film transistor liquid crystal display. At least a gate line and a data line define at least one pixel area. An enclosed cavity is formed in the gate line to separate the gate line into a first gate region and a second gate region. A thin film transistor has a gate electrode that is the first gate region or the second gate region, a source electrode that is an extension of the data line and is over the enclosed cavity, and a drain electrode. A pixel electrode covers the pixel area and is electrically connected to the drain electrode.