Abstract:
A method for supporting recovery from failure of a node in a network of nodes interconnected by links, wherein the failed node is in a path providing a service level between an ingress point and an egress point of the network, comprises: (a) selecting a set of one or more intermediate nodes between the ingress point and the egress point, the set excluding the failed node; (b) determining, based on available bandwidth of the network, a non-zero fraction of the service level to route from the ingress point to each intermediate node; (c) implementing, during a first routing phase, a first routing method to determine one or more paths from the ingress point to each intermediate node for routing the corresponding fraction of the service level; and (d) implementing, during a second routing phase, a second routing method to determine one or more paths from each intermediate node to the egress point for routing the corresponding fraction of the service level.
Abstract:
A packet network of interconnected nodes employs a method of routing with service-level guarantees to determine a path through the network for a requested multicast, label-switched path Each of the nodes includes one or more routers that forward packets based on a forwarding table constructed from a directed tree determined in accordance with the method of multicast routing with service-level guarantees. For a first implementation, a heuristic algorithm uses a scaling phase that iteratively adjusts a maximum arc capacity, determines the resulting tree for the iteration, and selects the tree as the routing tree that provides the “maximum” flow. For a second implementation, the heuristic algorithm computes maximum multicast flows and determines links in the network that are “critical” to satisfy future multicast routing requests. A multicast routing tree is selected such that provisioning the flows over its links “minimally interferes” with capacity of paths needed for future demands.
Abstract:
This patent application relates to an agile network architecture that can be employed in data centers, among others. One implementation provides a virtual layer-2 network connecting machines of a layer-3 infrastructure.
Abstract:
A request to modify an object in storage that is associated with one or more computing devices may be obtained, the storage organized based on a latch-free B-tree structure. A storage address of the object may be determined, based on accessing a mapping table that includes map indicators mapping logical object identifiers to physical storage addresses. A prepending of a first delta record to a prior object state of the object may be initiated, the first delta record indicating an object modification associated with the obtained request. Installation of a first state change associated with the object modification may be initiated via a first atomic operation on a mapping table entry that indicates the prior object state of the object. For example, the latch-free B-tree structure may include a B-tree like index structure over records as the objects, and logical page identifiers as the logical object identifiers.
Abstract:
A request to modify an object in storage that is associated with one or more computing devices may be obtained, the storage organized based on a latch-free B-tree structure. A storage address of the object may be determined, based on accessing a mapping table that includes map indicators mapping logical object identifiers to physical storage addresses. A prepending of a first delta record to a prior object state of the object may be initiated, the first delta record indicating an object modification associated with the obtained request. Installation of a first state change associated with the object modification may be initiated via a first atomic operation on a mapping table entry that indicates the prior object state of the object. For example, the latch-free B-tree structure may include a B-tree like index structure over records as the objects, and logical page identifiers as the logical object identifiers.
Abstract:
A technique for resource allocation in a wireless network (for example, an access point type wireless network), which supports concurrent communication on a band of channels, is provided. The technique includes accepting connectivity information for the network that supports concurrent communication on the band of channels. A conflict graph is generated from the connectivity information. The generated conflict graph models concurrent communication on the band of channels. A linear programming approach, which incorporates information form the conflict graph and rate requirements for nodes of the network, can be utilized to maximize throughput of the network.
Abstract:
This patent application relates to an agile network architecture that can be employed in data centers, among others. One implementation provides a virtual layer-2 network connecting machines of a layer-3 infrastructure.
Abstract:
Systems and methods that distribute load balancing functionalities in a data center. A network of demultiplexers and load balancer servers enable a calculated scaling and growth operation, wherein capacity of load balancing operation can be adjusted by changing the number of load balancer servers. Accordingly, load balancing functionality/design can be disaggregated to increase resilience and flexibility for both the load balancing and switching mechanisms of the data center.
Abstract:
A technique for resource allocation in a wireless network (for example, an access point type wireless network), which supports concurrent communication on a band of channels, is provided. The technique includes accepting connectivity information for the network that supports concurrent communication on the band of channels. A conflict graph is generated from the connectivity information. The generated conflict graph models concurrent communication on the band of channels. A linear programming approach, which incorporates information form the conflict graph and rate requirements for nodes of the network, can be utilized to maximize throughput of the network.
Abstract:
A computer-implemented method of computing throughput of a data-routing scheme for a network of nodes interconnected by links and having at least one ingress point and at least one egress point. The method includes: deriving a polynomial-size linear program from a combination of a first linear program and a second linear program and solving the polynomial-size linear program. The first linear program has infinite constraints and minimizes maximum-link utilization of a link in a path between the ingress point and the egress point. The second linear program determines whether any constraint of the first linear program is violated.