摘要:
Methods, apparatus, and systems to perform secure registration of a femto access point for trusted access to an operator-controlled network element. Method steps include establishing a security association for at least one said femto access point, making a request using the security association to an operator-controlled network element, which requests a secure registration credential from an authorizing component. The operator-controlled network element constructs a secure registration credential and sends the secure registration credential to the requesting femto access point, thus authorizing trusted access by the requesting femto access point to access operator-controlled network elements. Embodiments include establishing a security association via an IPsec security association received from a security gateway which is within an operator-controlled domain and using an operator-controlled database of IPsec inner addresses. In some embodiments the femto access point conducts message exchanges using one or more IMS protocols and components, including call session control function elements, which elements in turn may authorize a femto access point within the IMS domain, may or access non-IMS network elements for authorization.
摘要:
A mobile device/UE identifies calls to or callbacks from a Public Safety Access Point (PSAP) in order to provide priority handling. When the UE does not detect that the call being made is an emergency call, then the network facilitates identification during call establishment of the emergency nature. The network identifies the call as emergency call in a SIP response by setting the Priority header to distintive value (e.g., “emergency-call”) or the “P-Asserted-Identity to a distinctive value (e.g., urn:services:sos). When PSAP chooses to call back the mobile/UE, the mobile/UE can terminate any ongoing calls and accept this call from the PSAP and can disable other supplementary services (e.g., call waiting, three-way calling etc.) during the call. A P-Asserted-Identity of the incoming call is set to a distinctive location associated with PSAP (e.g., urn:services:sos). Alternatively, the incoming call has a Priority header set to a distinctive value (e.g., “emergency”, “emergency-callback”).
摘要:
Techniques for performing handover in order to maintain call continuity for a user equipment (UE) are described. The UE may communicate with a first cell in a radio access network (RAN) for a packet-switched (PS) call, e.g., for Voice-over-Internet Protocol (VoIP) via High-Speed Packet Access (HSPA) in W-CDMA. The UE may send measurement reports to the RAN and may receive trigger from the RAN. The UE may establish a circuit-switched (CS) call with the first cell while the PS call is pending at the first cell. The PS call and the CS call may be for a voice call, and the UE may switch data path for the voice call from the PS call to the CS call and then terminate the PS call. The UE may then perform handover of the CS call from the first cell to a second cell, which may not support VoIP.
摘要:
Techniques for supporting handover of an emergency call between wireless networks are described. A UE may communicate with a first wireless network (e.g., a 3GPP E-UTRAN) for an emergency call and may receive an indication to perform handover to a second wireless network (e.g., a CDMA2000 1xRTT network). In an aspect, the UE may send a message including an emergency indication (an emergency global number, or a reserved emergency number, or some other indication) to initiate handover to the second wireless network. A designated network entity may recognize the emergency call based on the emergency indication and may map the emergency indication to a local emergency number or an Emergency Session Transfer Number for SRVCC (E-STN-SR), which may be used to establish a new incoming call leg to a network server anchoring the emergency call. The UE may then communicate with the second wireless network via the network server for the emergency call after handover.
摘要:
Mobile unassisted dormant handoff in a wireless communication system supporting packet data communications. While in a dormant mode, a mobile node may change packet zones, wherein different packet zones are serviced by at least one different infrastructure element, without identifying the change to the system. The change in packet zone does not necessarily trigger establishment of a communication path for the mobile node until there is packet data ready for communication. In one embodiment, mobile assistance is adapted to the system, and is disabled at the mobile node by an indication in a system parameter message transmitted by the system and received by the mobile node.
摘要:
Techniques for supporting policy control and charging (PCC) functions in a wireless communication network are described. In one design, a Policy Control and Charging Rules Function (PCRF) may receive a request from a first network entity (e.g., a home agent) to establish a PCC session for a user equipment (UE) accessing the first network entity using a mobility protocol (e.g., Mobile IP). The PCRF may determine the mobility protocol used by the UE based on an IP-CAN Type parameter included in the request. The PCRF may determine PCC rules for the PCC session based on the mobility protocol and may send the PCC rules to the first network entity. The first network entity may apply the PCC rules on packets for the PCC session and may count each packet for charging. A second network entity may forward the packets but would not count these packets for charging.
摘要:
Certain aspects of the present disclosure provide methods for detecting a routing loop between at least two home agents utilizing the mobile internet protocol (MIPv6) standard. In a first method, the home agent sends a test message to the last care of address associated with a mobile node and receives a reply if there is no loop. In a second method, the home agent parses a packet and checks if the address of any of the inner headers matches the address of the home agent to find a loop between home agents.
摘要:
Techniques for supporting policy control and charging (PCC) functions in a wireless communication network are described. In one design, a Policy Control and Charging Rules Function (PCRF) may receive a request from a first network entity (e.g., a home agent) to establish a PCC session for a user equipment (UE) accessing the first network entity using a mobility protocol (e.g., Mobile IP). The PCRF may determine the mobility protocol used by the UE based on an IP-CAN Type parameter included in the request. The PCRF may determine PCC rules for the PCC session based on the mobility protocol and may send the PCC rules to the first network entity. The first network entity may apply the PCC rules on packets for the PCC session and may count each packet for charging. A second network entity may forward the packets but would not count these packets for charging.