摘要:
Techniques for performing handover in order to maintain call continuity for a user equipment (UE) are described. The UE may communicate with a first cell in a radio access network (RAN) for a packet-switched (PS) call, e.g., for Voice-over-Internet Protocol (VoIP) via High-Speed Packet Access (HSPA) in W-CDMA. The UE may send measurement reports to the RAN and may receive trigger from the RAN. The UE may establish a circuit-switched (CS) call with the first cell while the PS call is pending at the first cell. The PS call and the CS call may be for a voice call, and the UE may switch data path for the voice call from the PS call to the CS call and then terminate the PS call. The UE may then perform handover of the CS call from the first cell to a second cell, which may not support VoIP.
摘要:
An inter-system handover system for a wireless communication system supports hand-down and hand-up of user equipment (UE) to different radio access technologies, including synchronous and asynchronous systems. Latency and handover connection failures are reduced by an access node (nodeB) broadcasting information about neighboring systems (targets) when the UE reception (RX) capability is both inside or outside the reception range of the target. A single RX chain is sufficient, although transitioning between a wireless wide area network (WWAN) to a wireless local area network may (WLAN) may advantageously benefit from simultaneous operation on two Rx chains. Optimized list of neighboring RAT systems (targets) are broadcast from the network, including measurement parameters and reporting instructions. Thereby, UE-driven reporting minimizes latencies. UE reports other-system searches to network only if needed for a handover. In addition, handover requests can be bundled with other-system measurement information, if necessary, for additional efficiencies.
摘要:
Techniques for performing handover in order to maintain call continuity for a user equipment (UE) are described. The UE may communicate with a first cell in a radio access network (RAN) for a packet-switched (PS) call, e.g., for Voice-over-Internet Protocol (VoIP) via High-Speed Packet Access (HSPA) in W-CDMA. The UE may send measurement reports to the RAN and may receive trigger from the RAN. The UE may establish a circuit-switched (PS) call with the first cell while the PS call is pending at the first cell. The PS call and the CS call may be for a voice call, and the UE may switch data path for the voice call from the PS call to the CS call and then terminate the PS call. The UE may then perform handover of the CS call from the first cell to a second cell, which may not support VoIP.
摘要:
An inter-system handover system for a wireless communication system supports hand-down and hand-up of user equipment (UE) to different radio access technologies, including synchronous and asynchronous systems. Latency and handover connection failures are reduced by an access node (nodeB) broadcasting information about neighboring systems (targets) when the UE reception (RX) capability is both inside or outside the reception range of the target. A single RX chain is sufficient, although transitioning between a wireless wide area network (WWAN) to a wireless local area network may (WLAN) may advantageously benefit from simultaneous operation on two Rx chains. Optimized list of neighboring RAT systems (targets) are broadcast from the network, including measurement parameters and reporting instructions. Thereby, UE-driven reporting minimizes latencies. UE reports other-system searches to network only if needed for a handover. In addition, handover requests can be bundled with other-system measurement information, if necessary, for additional efficiencies.
摘要:
An inter-system handover system for a wireless communication system supports hand-down and hand-up of user equipment (UE) to different radio access technologies, including synchronous and asynchronous systems. Latency and handover connection failures are reduced by an access node (nodeB) broadcasting information about neighboring systems (targets) when the UE reception (RX) capability is both inside or outside the reception range of the target. A single RX chain is sufficient, although transitioning between a wireless wide area network (WWAN) to a wireless local area network may (WLAN) may advantageously benefit from simultaneous operation on two Rx chains. Optimized list of neighboring RAT systems (targets) are broadcast from the network, including measurement parameters and reporting instructions. Thereby, UE-driven reporting minimizes latencies. UE reports other-system searches to network only if needed for a handover. In addition, handover requests can be bundled with other-system measurement information, if necessary, for additional efficiencies.
摘要:
Described herein are mechanisms and methods that facilitate preparation of inter-radio access technology (inter-RAT) and/or inter-frequency handover with respect to a mobile device (user equipment). User equipment can indicate to a network servicing the user equipment that the user equipment desires to perform measurements with respect to a different frequency and/or different technology. Data on the downlink channel can then be scheduled to ensure that data intended for the user equipment is not lost while the user equipment is performing the measurements.
摘要:
Aspects relate to allowing a mobile device to discover missing neighbor cell relations when there is a radio link failure. At substantially the same time as connecting to a new cell that utilizes the same radio link technology, the failure is reported. If a connection is reestablished with a cell that utilizes a different radio link technology, the radio link failure information (and related missing neighbor information) is retained and reported later when a connection with a cell that utilizes the same radio link technology is established.
摘要:
Systems and methodologies are described that facilitate network management and optimization. As described herein, a network and a device communicating with the network can exchange network management information, thereby supporting a Self Organized Network (SON) architecture for improved network management and optimization performance. A Non-Access Stratum (NAS) layer protocol and/or an Internet Protocol (IP) application, in combination with a set of associated network management messages, can be utilized to exchange network management information between a device and a network. As further described herein, various procedures can be utilized to install a SON policy to a device in order to define device behavior for operations such as collecting and reporting information related to network management. Additionally, a set of standardized events can be defined, based on which a device can detect the occurrence of an event and report the occurrence to an associated network.
摘要:
Systems and methodologies are described that facilitate network management and optimization. As described herein, a network and a device communicating with the network can exchange network management information, thereby supporting a Self Organized Network (SON) architecture for improved network management and optimization performance. A Non-Access Stratum (NAS) layer protocol and/or an Internet Protocol (IP) application, in combination with a set of associated network management messages, can be utilized to exchange network management information between a device and a network. As further described herein, various procedures can be utilized to install a SON policy to a device in order to define device behavior for operations such as collecting and reporting information related to network management. Additionally, a set of standardized events can be defined, based on which a device can detect the occurrence of an event and report the occurrence to an associated network.
摘要:
Systems and methodologies are described that facilitate employing a paging indicator channel in connection with high speed channels in a wireless communications network. A paging indicator transmission can be sent on the paging channel to one or more mobile devices. The paging indicator indicates that additional information such as a full paging messages, other control plane data or other user plane data is expected to be transmitted at a specific time instant (e.g., subframe) on the associated high speed channel. A set of parameters can be transmitted on common channels that specify a set of associated subframes in a high speed channel. Mobile devices can analyze the set of parameters to determine the associated subframes and receive the subframes in accordance with a schedule.