摘要:
An implantable medical device delivers anti-tachyarrhythmia therapies including anti-tachycardia pacing (ATP). If a detected tachyarrhythmia is classified as a type suitable for treatment using ATP, the implantable medical device selects one of an atrial ATP (A-ATP) mode, a ventricular ATP (V-ATP) mode, and a concurrent atrio-ventricular ATP (concurrent AV-ATP) mode according to the characteristics of the detected tachyarrhythmia. The concurrent ATP mode is an ATP mode during which the atrial pacing pulses and the ventricular pacing pulses are delivered concurrently. In one embodiment, the concurrent AV-ATP mode includes a synchronized atrio-ventricular ATP (synchronized AV-ATP) mode during which atrial and ventricular pacing pulses are delivered synchronously and an independent atrio-ventricular ATP (independent AV-ATP) mode during which atrial and ventricular pacing pulses are delivered concurrently but timed independently.
摘要:
Systems and methods are described for classifying a cardiac rhythm. A cardiac rhythm is classified using a classification process that includes a plurality of cardiac rhythm discriminators. Each rhythm discriminator provides an independent classification of the cardiac rhythm. The classification process is modified if the modification is likely to produce enhanced classification results. The rhythm is reclassified using the modified classification process.
摘要:
An implantable medical device delivers anti-tachyarrhythmia therapies including anti-tachycardia pacing (ATP). If a detected tachyarrhythmia is classified as a type suitable for treatment using ATP, the implantable medical device selects one of an atrial ATP (A-ATP) mode, a ventricular ATP (V-ATP) mode, and a concurrent atrio-ventricular ATP (concurrent AV-ATP) mode according to the characteristics of the detected tachyarrhythmia. The concurrent ATP mode is an ATP mode during which the atrial pacing pulses and the ventricular pacing pulses are delivered concurrently. In one embodiment, the concurrent AV-ATP mode includes a synchronized atrio-ventricular ATP (synchronized AV-ATP) mode during which atrial and ventricular pacing pulses are delivered synchronously and an independent atrio-ventricular ATP (independent AV-ATP) mode during which atrial and ventricular pacing pulses are delivered concurrently but timed independently.
摘要:
A cardiac rhythm management device is configured to discriminate between ventricular and supraventricular tachycardias (referred to as SVT/VT discrimination) by utilizing a morphology criterion in which the morphology of electrogram waveforms during ventricular beats are analyzed to determine if the beats are normally conducted. After the delivery of a cardioversion/defibrillation shock, however, the intraventricular conduction system is left in a modified state which alters the subsequently generated electrogram signal. Use of the morphology criterion for to SVT/VT discrimination is discontinued after delivery of such a shock and resumed after a predetermined minimum number of normally conducted ventricular beats has been detected.
摘要:
An ambulatory or implantable device, such as a pacer, defibrillator, or other cardiac rhythm management device, can tolerate magnetic resonance imaging (MRI) or other noise without turning on an integrated circuit diode by selectively providing a bias voltage that can overcome an expected induced voltage resulting from the MRI or other noise.
摘要:
An implantable or other ambulatory device, such as a pacer, defibrillator, or other cardiac function management device, can use imaging information, such as one or more of cardiac functional magnetic resonance imaging (fMRI) information or cardiac magnetic resonance imaging (MRI) information, such as for helping optimize one or more parameters of the implantable or other ambulatory device.
摘要:
Physiologic information can be received from a subject during a portion of a magnetic resonance imaging (MRI) session using a sensing circuit of an implantable medical device (IMD). An indication of an active MRI scan can be received, and a time period to inhibit use of physiological information from the subject can be determined following the received indication of the active MRI scan.
摘要:
An apparatus comprising an implantable cardiac signal sensing circuit configured for sensing an intrinsic cardiac signal, a memory to store a template of a morphology of normal atrial-ventricular conduction, and a controller that includes a tachyarrhythmia detection circuit and a correlation circuit. The tachyarrhythmia detection circuit is configured for detecting a rhythm with elevated ventricular rate using the sensed intrinsic cardiac signal. The correlation circuit is configured for iteratively calculating a correlation between the sensed intrinsic cardiac signal and the template, and comparing the calculated correlation to a variable correlation threshold to determine whether the detected rhythm correlates to the template. The apparatus also includes a therapy circuit configured for inhibiting a ventricular tachycardia therapy when the detected rhythm correlates to the template. Other apparatuses and methods are described.
摘要:
A cardiac rhythm management system can be used to detect episode beats associated with cardiac events in a subject's body. These events may be monitored and depolarization morphology information can be derived for candidate arrhythmic beats in an arrhythmia episode. An arrhythmic beat morphology template may be formed from selecting at least one of the candidate arrhythmic beats based upon user's labeling according to specific morphologies of one or more candidate episodes. Methods of use are also presented.
摘要:
This document discusses, among other things, detection of a sudden onset of a tachyarrhythmia. A sudden onset of tachyarrhythmia is determined by monitoring changes in intrinsic ventricular rate, such as by using one or more sensing channels in the ICD. A lowest tachyarrhythmia rate threshold is accompanied by a slightly lower “hysteresis tachyarrhythmia rate threshold.” If a sudden onset of tachyarrhythmia is declared, the sudden onset status is not reset by the ventricular rate falling below the lowest tachyarrhythmia rate threshold, but is instead reset by the ventricular rate falling below the slightly lower hysteresis tachyarrhythmia rate threshold.