摘要:
A thermal inkjet printhead with generally planar heater elements disposed in respective bubble forming chambers, whereby the area of each heater is less than 300 μm2. The heater area influences the energy required to heat the heater volume up to the fluid superheat limit; the energy required to heat the protective coatings covering the heater to the superheat limit; the heat that diffuses into the underlayer prior to bubble nucleation; and, the heat that diffuses into the ink prior to bubble nucleation. Reducing the surface area of the heater reduces all of these terms and has a significant impact on the energy required to form a bubble and eject ink.
摘要:
There is disclosed an ink jet printhead which comprises a plurality of nozzles and one or more heater elements corresponding to each nozzle. Each heater element is configured to heat a bubble forming liquid in the printhead to a temperature above its boiling point to form a gas bubble therein. The generation of the bubble causes the ejection of a drop of an ejectable liquid (such as ink) through an ejection aperture in each nozzle, to effect printing. In each nozzle, less than 200 nanoJoules of energy is transferred to the heater element in order to form the gas bubble that causes the ejection of the drop of ejectable liquid. This configuration provides for very efficient operation.
摘要:
An inkjet nozzle assembly has a chamber with a nozzle opening for ejecting a liquid, a heater element disposed in the chamber, and a dielectric layer sandwiched between the heater element and a wall of the chamber. The dielectric layer has a thermal product of less than 1495 Jm−2K−1s−1/2. The thermal product is defined as (ρCk)1/2, where ρ is the density of the layer, C is specific heat of the layer and k is thermal conductivity of the layer.
摘要:
The invention provides for a printhead assembly for a pagewidth printer. The assembly includes a substrate channel, an ink hose, a support plate, an extrusion and a cover plate. The substrate channel operatively positions a plurality of printhead modules to form a pagewidth printhead module assembly. The ink hose is positioned within the substrate channel to supply the printhead modules with ink, and the support plate encloses the ink hose within the substrate channel. The extrusion houses bus bars operatively providing electrical power to the printhead modules, and the cover plate secures a flex printed circuit board (PCB) in the assembly, the PCB forming a data bus to the printhead modules.
摘要:
An inkjet printhead that has an elongate chassis, first groups of apertures spaced along the elongate chassis, an ink distribution unit defining a plurality of ink distribution passages and second groups of apertures in fluid communication with respective ink distribution passages, the ink distribution unit being mounted to the elongate chassis so that the first group of apertures and the second group of apertures coincide and, a plurality of printhead modules for ejecting ink supplied through the ink distribution passages and the aligned first and second groups.
摘要:
An inkjet nozzle assembly has a chamber with a nozzle opening for ejecting a liquid, a heater element disposed in the chamber, and a dielectric layer sandwiched between the heater element and a wall of the chamber. The dielectric layer has a thermal product of less than 1495 Jm−2K−1s−1/2. The thermal product is defined as (ρCk)1/2, where ρ is the density of the layer, C is specific heat of the layer and k is thermal conductivity of the layer.
摘要:
A inkjet printhead with heater elements adjacent an array of respective nozzles for heating a water-based printing fluid to form a gas bubble for ejecting a drop of the printing fluid from the nozzle. The heater is separated from the nozzle by less than 5 μm at their closest points and the nozzle length is less than 5 μm. The volume of liquid between the heater and the nozzle determines the inertia of the liquid and its acceleration in response to bubble formation. Moving the heater closer to the nozzle reduces the inertia of the liquid and increases its acceleration, so a lower bubble impulse is needed to eject a drop. This allows the printhead to use smaller heater elements with lower power requirements. Viscous drag in the nozzle reduces the momentum of fluid flowing through the nozzle. The viscous drag increases as the nozzle length (in the direction of fluid flow) increases. By reducing the nozzle length, a lower bubble impulse is needed to eject a drop. This also allows the printhead to use smaller heater elements with lower power requirements.
摘要:
This invention provides for an inkjet printhead having an array of micro-electromechanical nozzles arrangements. Each nozzle arrangement includes side walls located on a wafer substrate with a roof layer deposited on said walls to define an ink chamber, with the roof layer defining a nozzle aperture. The nozzle arrangement also includes an inlet defined in the substrate to supply the ink chamber with printing fluid. Further includes is at least one heater element having a mass of less than 10 nanograms suspended between the side walls in the chamber, so that when electrical actuation energy of less than 500 nanojoules is applied to the heater element, a vapour bubble is formed in the fluid leading to a pressure increase in the chamber thereby ejecting the fluid via the nozzle aperture. The heater element has an annular shape with a point of collapse of the bubble near a centre thereof.
摘要:
A thermal inkjet printhead with heater elements disposed in respective bubble forming chambers for heating part of the ejectable liquid above its boiling point to form a gas bubble that causes the ejection of a drop of the ejectable liquid from the nozzle, wherein, the heater is separated from the nozzle by less than 5 μm at their closest points; the nozzle length is less than 5 μm; and the ejectable liquid has a viscosity less than 5 cP. The volume of liquid between the heater and the nozzle determines the inertia of the liquid and its acceleration in response to bubble formation. Moving the heater closer to the nozzle reduces the inertia of the liquid and increases its acceleration, so a lower bubble impulse is needed to eject a drop. This allows the printhead to use smaller heater elements with lower power requirements. Viscous drag in the nozzle reduces the momentum of fluid flowing through the nozzle. The viscous drag increases as the nozzle length (in the direction of fluid flow) increases. By reducing the nozzle length, a lower bubble impulse is needed to eject a drop. This also allows the printhead to use smaller heater elements with lower power requirements.
摘要:
There is disclosed an inkjet printhead integrated which comprises drive circuitry, a plurality of nozzles and one or more heater elements corresponding to each nozzle. Each heater element is configured to heat a bubble forming liquid in the printhead to a temperature above its boiling point to form a gas bubble therein. The generation of the bubble causes the ejection of a drop of an ejectable liquid (such as ink) through respective corresponding nozzle, to effect printing. Each heater element has a surface area to volume ratio greater than 4:1. This configuration ensures that heat is quickly transferred from the elements to the ink for efficient operation and minimal heating of the printhead substrate.