摘要:
An inkjet printhead comprises a plurality of nozzles; a supply of printing fluid in fluid communication with the plurality of nozzles; and a plurality of heater elements corresponding respectively to each of the nozzles, the heater elements for heating the printing fluid to form a gas bubble for ejecting a drop of printing fluid of a predetermined volume from the nozzle. Each of the heater elements has an area proportional to the predetermined volume. The area being such that an amount of energy generated by each heater element to form the gas bubble is substantially equal to or less than an amount of energy absorbable by a drop of printing fluid having the predetermined volume.
摘要:
An inkjet printhead comprises a plurality of nozzles; a supply of printing fluid in fluid communication with the plurality of nozzles; and a plurality of heater elements corresponding respectively to each of the nozzles, the heater elements for heating the printing fluid to form a gas bubble for ejecting a drop of printing fluid of a predetermined volume from the nozzle. Each of the heater elements has an area proportional to the predetermined volume. The area being such that an amount of energy generated by each heater element to form the gas bubble is substantially equal to or less than an amount of energy absorbable by a drop of printing fluid having the predetermined volume.
摘要:
A inkjet printhead with heater elements adjacent an array of respective nozzles for heating a water-based printing fluid to form a gas bubble for ejecting a drop of the printing fluid from the nozzle. The heater is separated from the nozzle by less than 5 μm at their closest points and the nozzle length is less than 5 μm. The volume of liquid between the heater and the nozzle determines the inertia of the liquid and its acceleration in response to bubble formation. Moving the heater closer to the nozzle reduces the inertia of the liquid and increases its acceleration, so a lower bubble impulse is needed to eject a drop. This allows the printhead to use smaller heater elements with lower power requirements. Viscous drag in the nozzle reduces the momentum of fluid flowing through the nozzle. The viscous drag increases as the nozzle length (in the direction of fluid flow) increases. By reducing the nozzle length, a lower bubble impulse is needed to eject a drop. This also allows the printhead to use smaller heater elements with lower power requirements.
摘要:
A thermal inkjet printhead with a heater element disposed in each of the bubble forming chambers wherein, the heater element has a protective surface coating that is less than 0.1 μm thick while still being capable of ejecting more than 1 billion drops without failure. Removing most or all of the protective coatings from the heater reduces or eliminates the thermal insulation between the heater and the ink. Nucleating a bubble in the ink chamber requires a much shorter pulse of less energy thereby improving printhead efficiency.
摘要:
A thermal inkjet printhead with generally planar heater elements disposed in respective bubble forming chambers, whereby the area of each heater is less than 300 μm2. The heater area influences the energy required to heat the heater volume up to the fluid superheat limit; the energy required to heat the protective coatings covering the heater to the superheat limit; the heat that diffuses into the underlayer prior to bubble nucleation; and, the heat that diffuses into the ink prior to bubble nucleation. Reducing the surface area of the heater reduces all of these terms and has a significant impact on the energy required to form a bubble and eject ink.
摘要:
An inkjet nozzle assembly has a chamber with a nozzle opening for ejecting a liquid, a heater element disposed in the chamber, and a dielectric layer sandwiched between the heater element and a wall of the chamber. The dielectric layer has a thermal product of less than 1495 Jm−2K−1s−1/2. The thermal product is defined as (ρCk)1/2, where ρ is the density of the layer, C is specific heat of the layer and k is thermal conductivity of the layer.
摘要:
An inkjet nozzle assembly has a chamber with a nozzle opening for ejecting a liquid, a heater element disposed in the chamber, and a dielectric layer sandwiched between the heater element and a wall of the chamber. The dielectric layer has a thermal product of less than 1495 Jm−2K−1s−1/2. The thermal product is defined as (ρCk)1/2, where ρ is the density of the layer, C is specific heat of the layer and k is thermal conductivity of the layer.
摘要:
A inkjet printhead with heater elements adjacent an array of respective nozzles for heating a water-based printing fluid to form a gas bubble for ejecting a drop of the printing fluid from the nozzle. The heater is separated from the nozzle by less than 5 μm at their closest points and the nozzle length is less than 5 μm. The volume of liquid between the heater and the nozzle determines the inertia of the liquid and its acceleration in response to bubble formation. Moving the heater closer to the nozzle reduces the inertia of the liquid and increases its acceleration, so a lower bubble impulse is needed to eject a drop. This allows the printhead to use smaller heater elements with lower power requirements. Viscous drag in the nozzle reduces the momentum of fluid flowing through the nozzle. The viscous drag increases as the nozzle length (in the direction of fluid flow) increases. By reducing the nozzle length, a lower bubble impulse is needed to eject a drop. This also allows the printhead to use smaller heater elements with lower power requirements.
摘要:
A thermal inkjet printhead with heater elements disposed in respective bubble forming chambers for heating part of the ejectable liquid above its boiling point to form a gas bubble that causes the ejection of a drop of the ejectable liquid from the nozzle, wherein, the heater is separated from the nozzle by less than 5 μm at their closest points; the nozzle length is less than 5 μm; and the ejectable liquid has a viscosity less than 5 cP. The volume of liquid between the heater and the nozzle determines the inertia of the liquid and its acceleration in response to bubble formation. Moving the heater closer to the nozzle reduces the inertia of the liquid and increases its acceleration, so a lower bubble impulse is needed to eject a drop. This allows the printhead to use smaller heater elements with lower power requirements. Viscous drag in the nozzle reduces the momentum of fluid flowing through the nozzle. The viscous drag increases as the nozzle length (in the direction of fluid flow) increases. By reducing the nozzle length, a lower bubble impulse is needed to eject a drop. This also allows the printhead to use smaller heater elements with lower power requirements.
摘要:
A fluid sensor for detecting fluid in a chamber, has a MEMS sensing element of conductive material with a resistance that is a function of temperature, and electrical contacts for connection to an electrical power source for heating the sensing element with an electrical signal, so that control circuitry can measure the current passing through the sensing element during heating of the sensing element; and determine the temperature of the sensing element from the known applied voltage, the measured current and the known relationship between the current, resistance and temperature. As the temperature of the element will be greater if it is in the presence of gas rather than liquid, the sensor determines if there is liquid or gas in the chamber. This is particularly useful to detect if the chambers of an inkjet printhead are primed with ink.