Abstract:
The present invention provides a method and an apparatus for the transmission of control signal in a radio communication system. The method includes the steps of processing first control information on the basis of a first resource index to create a first control signal, processing second control information on the basis of a second resource index to create a second control signal, and transmitting the first control signal and the second control signal.
Abstract:
A method of transmitting control signals in a wireless communication system includes multiplexing a first control signal with a second control signal in a slot, the slot comprising a plurality of orthogonal frequency division multiplexing (OFDM) symbols in time domain, the plurality of OFDM symbols being divided into a plurality of data OFDM symbols and a plurality of reference signal (RS) OFDM symbols, wherein the first control signal is mapped to the plurality of data OFDM symbols after the first control signal is spread by a base sequence in the frequency domain, the RS is mapped to the plurality of RS OFDM symbols, the second control signal is mapped to at least one of the plurality of RS OFDM symbols, and transmitting the first control signal and the second control signal in the slot.
Abstract:
A method of transmitting pilots id disclosed. The method of transmitting pilots includes transmitting pilots over N orthogonal frequency division multiplexing (OFDM) symbols, wherein a pilot at subcarrier k for OFDM symbol n is determined to have time varying characteristic, thereby to prevent the cause of spectral lines.
Abstract:
A method and apparatus for transmitting or detecting primary synchronization signal. The receiver receives primary synchronization signal from a transmitter, and detects the sequence used in the received primary synchronization signal by using three root indexes. Here, the primary synchronization signal is generated by using a Zadoff-Chu sequence having one of the three root indexes. The three root indexes comprise a first index and a second index, and a sum of the first index and the second index corresponds to the length of the Zadoff-Chu sequence.
Abstract:
A method of transmitting a control signal in a wireless communication system includes allocating a first sequence to spread a first control signal in a radio resource, allocating a second sequence to spread a second control signal in the radio resource, selecting one of the first control signal and the second control signal, generating a spread control signal by spreading the selected control signal, and transmitting the spread control signal in the radio resource, wherein the first sequence and the second sequence use different cyclic shifts of a base sequence.
Abstract:
A method of transmitting control signals in a wireless communication system includes multiplexing a first control signal with a second control signal in a slot, the slot comprising a plurality of orthogonal frequency division multiplexing (OFDM) symbols in time domain, the plurality of OFDM symbols being divided into a plurality of data OFDM symbols and a plurality of reference signal (RS) OFDM symbols, wherein the first control signal is mapped to the plurality of data OFDM symbols after the first control signal is spread by a base sequence in the frequency domain, the RS is mapped to the plurality of RS OFDM symbols, the second control signal is mapped to at least one of the plurality of RS OFDM symbols, and transmitting the first control signal and the second control signal in the slot.
Abstract:
A method for receiving a superframe header at a mobile station in a wireless mobile communication system is disclosed. The method comprises receiving a sub-frame including the superframe header and a first data channel and decoding the received superframe header. Herein, the superframe header is located within a predetermined physical frequency band and the pre-determined physical frequency band includes a synchronization channel.
Abstract:
A method for transmitting a random access preamble to a base station includes generating the random access preamble from a Zadoff-Chu (ZC) sequence, wherein the random access preamble is defined by cyclic shift (Cv) of the ZC sequence; and transmitting the random access preamble to the base station.
Abstract:
A method and a user equipment for transmitting control information in a communication system are discussed. The method according to an embodiment includes multiplying a transmission information symbol s for the control information by a frequency direction sequence c(k) to generate a first output sequence s(k), where s(k)=s*c(k), k=0, . . . , Nk−1, and Nk corresponds to a number of subcarriers included in a resource block allocated for an uplink control channel; multiplying the first output sequence s(k) by a time direction sequence x(n) to generate a second output sequence s(k, n), where s(k, n)=s(k)*x(n), n=0, . . . , Nn−1, and Nn corresponds to a number of symbols used for transmission of the control information in a transmission time interval; and transmitting the second output sequence s(k, n) through the uplink control channel in the transmission time interval.
Abstract:
Provided is a method and device for signal transmission having good PAPR/CM characteristics. With regard to one aspect of said method, the method for transmitting a reference signal in a wireless communication signal comprises a step wherein a reference signal sequence is generated, a step wherein said reference signal sequence is divided with respect to each of multiple sub-blocks, a step wherein each of said plurality of divided reference signal sequence is subject to circular shifting, and a step wherein said plurality of circular shifted reference signals are transmitted via said plurality of sub-blocks.