Abstract:
A method and apparatus for requesting uplink resources in a wireless communication system is provided. A user equipment determines whether a scheduling request for requesting uplink resources is triggered. If the scheduling request is triggered, the user equipment transmits a first set of frequency domain sequences and a second set of frequency domain sequences in a subframe.
Abstract:
A method and apparatus for transmitting or detecting primary synchronization signal. The receiver receives primary synchronization signal from a transmitter, and detects the sequence used in the received primary synchronization signal by using three root indexes. Here, the primary synchronization signal is generated by using a Zadoff-Chu sequence having one of the three root indexes. The three root indexes comprise a first index and a second index, and a sum of the first index and the second index corresponds to the length of the Zadoff-Chu sequence.
Abstract:
A method of mapping a physical resource to a logical resource in a wireless communication system is described. The method includes dividing a physical frequency band into at least one frequency partition. Each frequency partition is divided into a localized region and a distributed region in a frequency domain. The method further includes mapping the at least one frequency partition into at least one logical resource unit. The localized region is directly mapped into the logical resource unit and the distributed region is mapped into the logical resource unit after rearranging subcarriers within the distributed region.
Abstract:
A method and an apparatus of transmitting information in a wireless communication system are provided. The method includes transmitting information based on a first resource index through a first antennae and transmitting the information based on a second resource index through a second antennae.
Abstract:
A method of transmitting, by a transmitter, information in a wireless communication system, the method includes generating first and second symbols; generating first and second transmit vectors on the basis of an Alamouti code from the first and second symbols; and transmitting the first transmit vector through a first antenna and transmitting the second transmit vector through a second antenna. The first transmit vector consists of a first transmit symbol and a second transmit symbol. The second transmit vector consists of a third transmit symbol and a fourth transmit symbol. The first, second, third, and fourth transmit symbols are transmitted based on first and second resource indexes. The first symbol is a first modulation symbol for first information, and the second symbol is a second modulation symbol for second information.
Abstract:
This is provided a method for allocating pilots to a sub-frame. The sub-frame includes a plurality of blocks in time domain. The method includes allocating a data demodulation (DM) pilot used for demodulating data to two blocks spaced not contiguous with each other, and allocating a channel quality (CQ) pilot. System capacity can be increased, and degradation of performance incurred by a channel estimation error can be minimized.
Abstract:
A method of mapping a physical resource to a logical resource in a wireless communication system is described. The method includes dividing a physical frequency band into at least one frequency partition. Each frequency partition is divided into a localized region and a distributed region in a frequency domain. The method further includes mapping the at least one frequency partition into at least one logical resource unit. The localized region is directly mapped into the logical resource unit and the distributed region is mapped into the logical resource unit after rearranging subcarriers within the distributed region.
Abstract:
A method of generating a code sequence and method of adding additional information using the same are disclosed, by which a code sequence usable for a channel for synchronization is generated and by which a synchronization channel is established using the generated sequence. The present invention, in which the additional information is added to a cell common sequence for time synchronization and frequency synchronization, includes the steps of generating the sequence repeated in time domain as many as a specific count, masking the sequence using a code corresponding to the additional information to be added, and transmitting a signal including the masked sequence to a receiving end.
Abstract:
A method and device are disclosed for transmitting uplink control signals in a wireless communication system using at least one subframe comprising two slots, each slot including a plurality of symbols, the wireless communication system configured to transmit a first uplink control signal via an assigned first physical uplink control channel resource and to transmit a second uplink control signal via an assigned second physical uplink control channel resource. The method can include generating a modulation symbol by modulating the second uplink control signal, and transmitting the modulation symbol in a subframe via a physical uplink control channel resource which is assigned for the first uplink control signal if it is determined that the first uplink control signal and the second uplink control signal are to be transmitted in the subframe.
Abstract:
A method of performing cell search includes receiving a primary synchronization signal (PSS) comprising a primary synchronization code (PSC) and receiving a secondary synchronization signal (SSS) comprising a first secondary synchronization code (SSC) and a second SSC, wherein the SSS includes a first SSS and a second SSS, the first SSC and the second SSC are arranged in that order in the first SSS, and the second SSC and the first SSC are arranged in that order in the second SSS. Detection performance on synchronization signals can be improved, and cell search can be performed more reliably.