Abstract:
A method for a user equipment (UE) in a wireless communication system, includes receiving channel state information reference signal (CSI-RS) for at one antenna port from a network in a subframe, wherein the CSI-RS is mapped to at least one pair of resource elements (REs) per physical resource block (PRB) pair in consecutive orthogonal frequency division multiplexing (OFDM) symbols in the subframe, and wherein the subframe includes two slots, and each slot includes six OFDM symbols based on an extended cyclic prefix (CP).
Abstract:
Method for generating reference signal sequence using grouping is explained. In this method, base sequences are grouped such that each group contains at least one base sequence of each length, so UE(s) can use various length sequences as a reference signal. And in this method, inter cell interference caused by using various length sequence as a reference signal sequence can be minimized by grouping sequences having the high cross correlation relation.
Abstract:
A method for transmitting a physical uplink shared channel (PUSCH) by a user equipment in a wireless communication system, the method comprising: when transmission of a first physical uplink shared channel (PUSCH) on a first component carrier (CC) and transmission of a sounding reference signal (SRS) on a second CC coincide, transmitting the first PUSCH to a base station via a first subframe on the first CC, wherein the SRS is not transmitted at a last symbol of a second subframe on the second CC and the first PUSCH is transmitted at a last symbol of the first subframe on the first CC, and wherein the first subframe on the first CC and the second subframe on the second CC are aligned in time.
Abstract:
A method and apparatus for transmitting or detecting primary synchronization signal. The receiver receives primary synchronization signal from a transmitter, and detects the sequence used in the received primary synchronization signal by using three root indexes. Here, the primary synchronization signal is generated by using a Zadoff-Chu sequence having one of the three root indexes. The three root indexes comprise a first index and a second index, and a sum of the first index and the second index corresponds to the length of the Zadoff-Chu sequence.
Abstract:
A method and a user equipment for transmitting control information in a communication system are discussed. The method according to an embodiment includes multiplying a transmission information symbol s for the control information by a frequency direction sequence c(k) to generate a first output sequence s(k), where s(k)=s*c(k), k=0, . . . , Nk−1, and Nk corresponds to a number of subcarriers included in a resource block allocated for an uplink control channel; multiplying the first output sequence s(k) by a time direction sequence x(n) to generate a second output sequence s(k, n), where s(k, n)=s(k)*x(n), n=0, . . . , Nn−1, and Nn corresponds to a number of symbols used for transmission of the control information in a transmission time interval; and transmitting the second output sequence s(k, n) through the uplink control channel in the transmission time interval.
Abstract:
A method and a user equipment (UE) for generating a reference signal sequence in a wireless communication system are discussed. The method according to an embodiment includes receiving a cell-specific sequence hopping parameter from a base station. The cell-specific sequence hopping parameter is used to enable a sequence hopping for a plurality of UEs in a cell if a cell-specific group hopping parameter is used to disable a group hopping for the plurality of UEs in the cell. The method includes receiving a UE-specific sequence group hopping (SGH) parameter, specified to the UE, from the base station. The UE-specific SGH parameter is used to disable the sequence hopping, enabled by the cell-specific sequence hopping parameter. The method includes generating the reference signal sequence based on a base sequence number within a base sequence group. The base sequence number within the base sequence group is determined by the UE-specific SGH parameter.
Abstract:
A method is provided for transmitting, by a user equipment (UE), a demodulation reference signal (DMRS) in a wireless communication system. A first DMRS sequence, which is associated with a first layer, and a second DMRS sequence, which is associated with a second layer, are transmitted to a base station. A first orthogonal cover code (OCC) is applied to the first and second DMRS sequences. A third DMRS sequence, which is associated with a third layer, and a fourth DMRS sequence, which is associated with a fourth layer, are transmitted to the base station. A second OCC is applied to the third and fourth DMRS sequences.
Abstract:
A method for transmitting, by a base station, signals in a communication system. The base station transmits, to a mobile station via a primary carrier band of the mobile station, carrier aggregation configuration information informing the mobile station of a subsidiary carrier band for the mobile station. The base station receives, from the mobile station, control information for the subsidiary carrier band via the primary carrier band. The carrier aggregation configuration information includes a physical identification of a frequency allocation band used as the subsidiary carrier band and a logical identification assigned to the subsidiary carrier band for the mobile station. The physical identification includes one of plural absolute frequency band indexes assigned to frequency allocation bands available in the communication system. The logical identification includes a logical index assigned to the subsidiary carrier band identifying the subsidiary carrier band from among a plurality of frequency allocation bands.
Abstract:
A method for transmitting a sounding reference signal (SRS) at a user equipment in a time division duplex (TDD) communication system; and the user equipment are discussed. The method includes receiving downlink control information (DCI) including a request of the SRS transmission. The DCI includes information for receiving downlink data using multiple antennas by the user equipment. The method further includes transmitting the SRS to the base station according to the request of the SRS transmission.
Abstract:
A method and apparatus are described for transmitting a reference signal in a multi-antenna system. A terminal generates a plurality of reference signal sequences to which cyclic shift values different from each other are allocated, generates an orthogonal frequency division multiplexing (OFDM) symbol to which the plurality of reference signal sequences are mapped, and transmits the OFDM symbol to a base station through a plurality of antennas. The respective cyclic shift values allocated to the respective reference signal sequences are determined on the basis of a parameter n indicated by a cyclic shift field transmitted from a physical downlink control channel (PDCCH).