摘要:
A system and method for identifying a person as an authorized driver of a vehicle based on settings of the vehicle. The system includes a sensor for detecting a presence of a driver in the vehicle. The system also includes one or more control modules corresponding to the parameters of the vehicle. The parameters can be controlled by the control modules. The system also includes a driver ID controller coupled to the control modules and the sensor. The driver ID controller is configured to recognize the driver as an authorized driver based on inputs from the sensor and the control modules. The driver ID controller can also command the control units to adjust the parameters to predefined one or more attributes corresponding to the authorized driver.
摘要:
An adaptive vehicle control system that classifies a driver's driving style based on vehicle U-turn maneuvers. A process determines if the vehicle has started a turn if the yaw rate is greater than a first yaw rate threshold, and determines a vehicle heading angle based on the yaw rate and a sampling time if the vehicle has started a turn. The process then determines whether the vehicle maneuver has been completed by determining if the yaw rate is less than a second yaw rate threshold. The process then determines that the completed maneuver was a U-turn maneuver if the yaw rate is less than a third yaw rate threshold during the maneuver, the final vehicle heading angle is within a heading angle range and the duration of the maneuver is less than a predetermined time threshold. In one non-limiting embodiment, the heading angle range is between 165° and 195°.
摘要:
An adaptive vehicle control system that classifies a driver's driving style based on vehicle stopping maneuvers. The system reads sensor signals to provide a vehicle speed and determines whether the vehicle is currently in straight line driving or curve driving. If the vehicle is in straight line or curve driving and the vehicle speed is less than a speed threshold, the system determines that the vehicle is in an accelerating or decelerating maneuver. The system then determines that the accelerating and decelerating maneuver has ended if the vehicle is not in straight line or curve driving or the vehicle speed signal is less than the speed threshold. The system can then classify the vehicle accelerating and decelerating maneuver using select discriminate features.
摘要:
An adaptive vehicle control system that classifies a driver's driving style based on left/right-turn maneuvers. A process determines if the vehicle has started a turn if the yaw rate is greater than a first yaw rate threshold, and determines a vehicle heading angle based on the yaw rate and a sampling time if the vehicle has started a turn. The process then determines whether the vehicle maneuver has been completed by determining if the yaw rate is less than a second yaw rate threshold. The process then determines that the completed maneuver was a left/right-turn maneuver if the yaw rate is less than a third yaw rate threshold over the sampling time and the vehicle heading angle is within a heading angle range for a time period less than a predetermined time threshold. In one non-limiting embodiment, the heading angle range is between 75° and 105°.
摘要:
A vehicle control system that classifies a driver's driving style based on characteristic maneuvers. The system includes a plurality of vehicle sensors that detect various vehicle parameters. A maneuver identification processor receives the sensor signals to identify a characteristic maneuver of the vehicle and provides a maneuver identifier signal of the maneuver. A style characterization processor receives the maneuver identifier signals, sensor signals from the vehicle sensors and the traffic and road condition signals, and classifies driving style based on the signals to classify the style of the driver driving the vehicle. The classification of the driver style can be provided for a level-1 combination that combines the classification results from different maneuver type classifiers for a single maneuver, a level-2 combination that combines the classification results from multiple maneuvers that are of the same type and a level-3 combination that combines the classification results from different types of characteristic maneuvers.
摘要:
An adaptive vehicle control system that classifies a driver's driving style based on characteristic maneuvers and road and traffic conditions. The system includes a plurality of vehicle sensors that detect various vehicle parameters. A maneuver identification processor receives the sensor signals to identify a characteristic maneuver of the vehicle and provides a maneuver identifier signal of the maneuver. The system also includes a traffic condition recognition processor that receives the sensor signals, and provides traffic condition signals identifying traffic conditions. A style characterization processor receives the maneuver identifier signals, sensor signals from the vehicle sensors and the traffic condition signals, and classifies driving style based on the signals to classify the style of the driver driving the vehicle.
摘要:
A vehicle-trailer back-up control system that employs an active front steer sub-system. The system includes a smart hitch controller that receives a vehicle speed signal and a hand-wheel angle signal, and calculates a hitch angle command signal. The system further includes a hitch angle sensor that measures the hitch angle between the vehicle and the trailer that is compared to the hitch angle command signal to generate a hitch angle error signal. A PID control unit receives the hitch angle error signal, and generates a corrected road wheel angle signal based on proportional and derivative gains. The corrected road wheel angle signal is used to generate a motor angle signal that is applied to a steering actuator to be combined with the steering angle signal to generate the front wheel steering signal during a back-up maneuver.
摘要:
A real-time vehicle dynamics estimation system that employs a vehicle parameter estimator, a vehicle condition detector and a rich steering input detector for estimating vehicle understeer coefficient and front and rear cornering compliances in real time. The vehicle parameter estimator receives a front wheel steering angle signal, a rear wheel steering angle signal, a vehicle lateral acceleration signal, a vehicle yaw rate signal and a vehicle speed signal, and employs a linear parameter estimation algorithm for estimating the understeer coefficient, and the front and rear corning compliance. The vehicle condition detector receives the front wheel steering angle signal, the rear wheel steering angle signal, the vehicle yaw rate signal and the vehicle speed signal, and disables the vehicle parameter estimator if the vehicle is not operating in a linear region. The rich steering input detector receives the front wheel angle signal, the rear wheel angle signal and the vehicle speed signal, and provides an output signal indicating whether the estimated vehicle parameters are reliable and are ready to be used.
摘要:
A method is disclosed for controlling the rear wheel angle in a four-wheel steering vehicle such as a pickup truck. The front wheels are steered using the conventional operator handwheel linked to the front wheels. The rear wheels are actuated with a reversible electric motor and the rear wheel angle controlled using a computer with inputs of vehicle velocity, operator handwheel position and correlated front wheel angle, and handwheel turning rate. Control of rear wheel angle starts with a correlation of ratios of rear wheel angle to front wheel angle, R/F, vs. vehicle velocity suitable, determined under steady state front steering angle and velocity conditions, to maximize the contribution of the rear wheels while avoiding side-slip of the vehicle. It is found that driver steering feel and vehicle maneuverability is improved by imposing a minimum front wheel angle requirement before rear wheel steering is permitted and by modifying the current value of R/F with gain factors base d on the hand wheel angle and rate of motion.
摘要:
A brake system control for use in a vehicle with four wheels comprising the steps of: determining a desired yaw rate (454); determining a yaw torque command responsive to the desired yaw rate (806); if the vehicle is in an anti-lock braking mode during driver commanded braking, applying the yaw torque command to only one of the four wheels to release brake pressure in said one of the four wheels (258-266, 274, 278, 280, 410-418); if the vehicle is in a positive acceleration traction control mode during driver commanded acceleration, applying the yaw torque command to only one of the four wheels to apply brake pressure in said one of the four wheels (258-266, 288-292, 410-418); and if the vehicle is not in the anti-lock braking mode or in the positive acceleration traction control mode, then: (i) determining whether a vehicle brake pedal is depressed (370); (ii) if the vehicle brake pedal is depressed, applying brake force to the vehicle wheels responsive to the depression of the brake pedal (374, 412, 418), wherein the applied brake force is modified to at least two of the vehicle wheels to create a left-right brake torque differential responsive to the yaw torque command.