Abstract:
The present invention generates voltage signals or driving waveforms to actuate driving elements of a print head according to the programmable generation method discussed below. The procedure first provides a first memory area and a second memory area, in which driving waveform data used to generate the driving waveforms are stored. Different sets of the driving waveform data are stored in the respective memory areas. The procedure selects a working memory area at a predetermined interval of selection and carries out arithmetic operations using the set of driving waveform data stored in the selected working memory area, so as to generate a driving waveform signal. The selective use of the working memory area enables the resulting driving waveform to be switched over at a high speed at the predetermined interval of selection. The two memory areas may be constructed by separate memory chips. This configuration enables a reading operation from one memory area to be carried out in parallel with a writing operation into the other memory area. The arrangement of the present invention attains the high-speed changeover of a working driving waveform among a diversity of driving waveforms, while preventing a significant increase in memory capacity.
Abstract:
A shape of the drive signal within each one-pixel period of main scan is modified to have N different waveforms corresponding to N different values of the print signal, the N different values of the print signal representing formation of the N different dots. The N different waveforms of the drive signal are changed between the forward pass and the reverse pass. This will align the hitting positions of ink droplets in the main scanning direction during forward and reverse passes.
Abstract:
A printing material cartridge comprises: a memory device; a plurality of first terminals through which a power source voltage and signals for operating the memory device are supplied from a printing apparatus; and a plurality of second terminals to be used for detecting attachment conditions of the printing material cartridge in a cartridge attachment unit. The plurality of first terminals have a plurality of first contact portions that get in contact with corresponding apparatus-side terminals when the printing material container is properly attached to the cartridge attachment unit. The plurality of second terminals have a plurality of second contact portions that get in contact with corresponding apparatus-side terminals when the printing material container is properly attached to the cartridge attachment unit. The plurality of first and second contact portions are arranged so as to form a first row and a second row. Four contact portions among the plurality of second contact portions are placed at both ends of the first and second rows, respectively.
Abstract:
A storage device according to some aspects of the invention includes a communication unit configured to perform processing for communication with a host apparatus; a storage unit configured to have a first memory area and a second memory area that store therein received data from the host apparatus, and memory area selection information; a memory control unit configured to select one of the first memory area and the second memory area as a memory area for reading, select the other one thereof as a memory area for writing, and perform control of reading and writing; and an increment determination unit configured to compare a value of data having been read out from the memory area for reading by the memory control unit and a value of the received data to determine a magnitude relation therebetween.
Abstract:
A printing device includes a printing material container, a controller and a voltage applying unit. The printing material container has a storage device, a plurality of terminals for the storage device, and first and second attachment detection terminals. The storage device stores information of the amount of a printing material. The controller is connected to the plurality of terminals for the storage device and controls reading or writing of data from or in the storage device. The voltage applying unit applies a voltage for detection of attachment to the first attachment detection terminal. When the voltage applying unit applies the voltage for the detection of the attachment to the first attachment detection terminal, the controller sets the terminals for the storage device to a high impedance state.
Abstract:
A printing material container is detachably attachable to a printing apparatus having a plurality of apparatus-side terminals. The printing material container comprises a first device, a second device, and a terminal group that includes a plurality of first terminals, at least one second terminal and at least one third terminal. The plurality of first terminals are connected to the first device and respectively include a first contact portion for contacting a corresponding terminal among the plurality of apparatus-side terminals. The at least one second terminal is connected to the second device and includes a second contact portion for contacting a corresponding terminal among the plurality of apparatus-side terminals. The at least one third terminal is for the detection of shorting.
Abstract:
A storage device includes a nonvolatile storage section; and a control section that controls the nonvolatile storage section, wherein the control section includes an access control section that outputs a clock for access control for performing access control of a read/write of the nonvolatile storage section, and performs access control of the read/write to the nonvolatile storage section, and a masking process section that performs the masking process of a reset signal on the basis of the clock for access control from the access control section, and supplies the reset signal after the masking process to the access control section.
Abstract:
A printing material container is detachably attachable to a printing apparatus having a plurality of apparatus-side terminals. The printing material container comprises a first device, a second device, and a terminal group that includes a plurality of first terminals, at least one second terminal and at least one third terminal. The plurality of first terminals are connected to the first device and respectively include a first contact portion for contacting a corresponding terminal among the plurality of apparatus-side terminals. The at least one second terminal is connected to the second device and includes a second contact portion for contacting a corresponding terminal among the plurality of apparatus-side terminals. The at least one third terminal is for the detection of shorting.
Abstract:
A system includes a plurality of storage devices and a controller. The plurality of storage devices are bus-connected to one clock signal line and one data signal line connected to the controller. Each of the plurality of storage devices stores identification information in advance to distinguish the storage devices from each other. The controller transmits data using an identification information transmission period in which one storage device is selected from the plurality of storage devices by transmitting the identification information of the one storage device to the plurality of storage devices via the data signal line and a data transmission period in which the data is transmitted to the one selected storage device. A frequency of a clock signal during the identification information transmission period is set to be lower than a frequency of the clock signal during the data transmission period.
Abstract:
The present invention provides a storage device that enables identification data to be readily rewritten and ensures normal completion of a data writing operation in a short time period. In the storage device of the invention, an ID comparator determines whether or not identification data transmitted from a host computer coincides with identification data stored in a memory array. In the case of coincidence, the ID comparator sends an access enable signal EN to an operation code decoder. The operation code decoder analyzes a write/read command, switches over a direction of data transfer with regard to the memory array based on a result of the analysis, and requires an I/O controller to change a high impedance setting of a signal line connecting with a data terminal DT. This series of processing allows access to an address in the memory array specified by a count on an address counter.