Abstract:
A shared-nothing database system is provided in which parallelism and workload balancing are increased by assigning the rows of each table to “slices”, and storing multiple copies (“duplicas”) of each slice across the persistent storage of multiple nodes of the shared-nothing database system. When the data for a table is distributed among the nodes of a shared-nothing system in this manner, requests to read data from a particular row of the table may be handled by any node that stores a duplica of the slice to which the row is assigned. For each slice, a single duplica of the slice is designated as the “primary duplica”. All DML operations (e.g. inserts, deletes, updates, etc.) that target a particular row of the table are performed by the node that has the primary duplica of the slice to which the particular row is assigned. The changes made by the DML operations are then propagated from the primary duplica to the other duplicas (“secondary duplicas”) of the same slice.
Abstract:
Techniques are described for offloading remote direct memory operations (RDMOs) to “execution candidates”. The execution candidates may be any hardware capable of performing the offloaded operation. Thus, the execution candidates may be network interface controllers, specialized co-processors, FPGAs, etc. The execution candidates may be on a machine that is remote from the processor that is offloading the operation, or may be on the same machine as the processor that is offloading the operation. Details for certain specific RDMOs, which are particularly useful in online transaction processing (OLTP) and hybrid transactional/analytical (HTAP) workloads, are provided.
Abstract:
Techniques are provided for enabling a requesting entity to retrieve data that is managed by a database server instance from the volatile memory of a server machine that is executing the database server instance. The techniques allow the requesting entity to retrieve the data from the volatile memory of the host server machine without involving the database server instance in the retrieval operation. Because the retrieval does not involve the database server instance, the retrieval may succeed even when the database server instance has stalled or become unresponsive. In addition, direct retrieval of data using the techniques described herein will often be faster and more efficient than retrieval of the same information through conventional interaction with the database server instance.
Abstract:
A hashing scheme includes a cache-friendly, latchless, non-blocking dynamically resizable hash index with constant-time lookup operations that is also amenable to fast lookups via remote memory access. Specifically, the hashing scheme provides each of the following features: latchless reads, fine grained lightweight locks for writers, non-blocking dynamic resizability, cache-friendly access, constant-time lookup operations, amenable to remote memory access via RDMA protocol through one sided read operations, as well as non-RDMA access.
Abstract:
A method and apparatus for reconfiguring hardware structures to pipeline the execution of multiple special purpose hardware implemented functions, without saving intermediate results to memory, is provided. Pipelining functions in a program is typically performed by a first function saving its results (the “intermediate results”) to memory, and a second function subsequently accessing the memory to use the intermediate results as input. Saving and accessing intermediate results stored in memory incurs a heavy performance penalty, requires more power, consumes more memory bandwidth, and increases the memory footprint. Due to the ability to redirect the input and output of the hardware structures, intermediate results are passed directly from one special purpose hardware implemented function to another without storing the intermediate results in memory. Consequently, a program that utilizes the method or apparatus, reduces power consumption, consumes less memory bandwidth, and reduces the program's memory footprint.
Abstract:
A method and apparatus for reconfiguring hardware structures to pipeline the execution of multiple special purpose hardware implemented functions, without saving intermediate results to memory, is provided. Pipelining functions in a program is typically performed by a first function saving its results (the “intermediate results”) to memory, and a second function subsequently accessing the memory to use the intermediate results as input. Saving and accessing intermediate results stored in memory incurs a heavy performance penalty, requires more power, consumes more memory bandwidth, and increases the memory footprint. Due to the ability to redirect the input and output of the hardware structures, intermediate results are passed directly from one special purpose hardware implemented function to another without storing the intermediate results in memory. Consequently, a program that utilizes the method or apparatus, reduces power consumption, consumes less memory bandwidth, and reduces the program's memory footprint.
Abstract:
Techniques for processing a query are provided. One or more operations that are required to process a query are performed by a coprocessor that is separate from a general purpose microprocessor that executes query processing software. The query processing software receives a query, determines one or more operations that are required to be executed to fully process the query, and issues one or more commands to one or more coprocessors that are programmed to perform one of the operations, such as a table scan operation and/or a lookup operation. The query processing software obtains results from the coprocessor(s) and performs one or more additional operations thereon to generate a final result of the query.