Voice-based search processing
    51.
    发明授权
    Voice-based search processing 有权
    基于语音的搜索处理

    公开(公告)号:US08260809B2

    公开(公告)日:2012-09-04

    申请号:US11770535

    申请日:2007-06-28

    IPC分类号: G06F7/00 G06F17/30

    摘要: Architecture for completing search queries by using artificial intelligence based schemes to infer search intentions of users. Partial queries are completed dynamically in real time. Additionally, search aliasing can also be employed. Custom tuning can be performed based on at least query inputs in the form of text, graffiti, images, handwriting, voice, audio, and video signals. Natural language processing occurs, along with handwriting recognition and slang recognition. The system includes a classifier that receives a partial query as input, accesses a query database based on contents of the query input, and infers an intended search goal from query information stored on the query database. A query formulation engine receives search information associated with the intended search goal and generates a completed formal query for execution.

    摘要翻译: 通过使用基于人工智能的方案来推断用户的搜索意图来完成搜索查询的架构。 部分查询是实时动态完成的。 此外,还可以使用搜索别名。 可以至少基于文本,涂鸦,图像,手写,语音,音频和视频信号的查询输入进行定制调整。 自然语言处理发生,手写识别和俚语识别。 该系统包括接收部分查询作为输入的分类器,基于查询输入的内容访问查询数据库,并从存储在查询数据库中的查询信息推断预期的搜索目标。 查询制定引擎接收与预期搜索目标相关联的搜索信息,并生成完成的正式查询以供执行。

    ACTIVE LEARNING USING A DISCRIMINATIVE CLASSIFIER AND A GENERATIVE MODEL TO DETECT AND/OR PREVENT MALICIOUS BEHAVIOR
    55.
    发明申请
    ACTIVE LEARNING USING A DISCRIMINATIVE CLASSIFIER AND A GENERATIVE MODEL TO DETECT AND/OR PREVENT MALICIOUS BEHAVIOR 有权
    主动学习使用分类分类器和生成模型来检测和/或防止恶意行为

    公开(公告)号:US20090099988A1

    公开(公告)日:2009-04-16

    申请号:US11871587

    申请日:2007-10-12

    IPC分类号: G06F15/18

    CPC分类号: G06F15/16

    摘要: A malicious behavior detection/prevention system, such as an intrusion detection system, is provided that uses active learning to classify entries into multiple classes. A single entry can correspond to either the occurrence of one or more events or the non-occurrence of one or more events. During a training phase, entries are automatically classified into one of multiple classes. After classifying the entry, a generated model for the determined class is utilized to determine how well an entry corresponds to the model. Ambiguous classifications along with entries that do not fit the model well for the determined class are selected for labeling by a human analyst The selected entries are presented to a human analyst for labeling. These labels are used to further train the classifier and the models. During an evaluation phase, entries are automatically classified using the trained classifier and a policy associated with determined class is applied.

    摘要翻译: 提供了一种恶意行为检测/预防系统,例如入侵检测系统,其使用主动学习将条目分类到多个类中。 单个条目可以对应于一个或多个事件的发生或一个或多个事件的不发生。 在训练阶段,条目自动分为多个类别之一。 在对条目进行分类之后,使用所确定的类的生成模型来确定条目对应于模型的良好程度。 选择不确定的分类以及不符合确定类别的模型的条目,由人类分析人员进行标签。选定的条目将提交给人类分析人员进行标签。 这些标签用于进一步训练分类器和型号。 在评估阶段,使用训练有素的分类器对条目进行自动分类,并应用与确定类相关联的策略。

    Obfuscation of spam filter
    56.
    发明授权
    Obfuscation of spam filter 失效
    垃圾邮件过滤器的混淆

    公开(公告)号:US07519668B2

    公开(公告)日:2009-04-14

    申请号:US10601034

    申请日:2003-06-20

    IPC分类号: G06F15/16

    CPC分类号: H04L51/12

    摘要: The subject invention provides systems and methods that facilitate obfuscating a spam filtering system to hinder reverse engineering of the spam filters and/or to mitigate spammers from finding a message that consistently gets through the spam filters almost every time. The system includes a randomization component that randomizes a message score before the message is classified as spam or non-spam so as to obscure the functionality of the spam filter. Randomizing the message score can be accomplished in part by adding a random number or pseudo-random number to the message score before it is classified as spam or non-spam. The number added thereto can vary depending on at least one of several types of input such as time, user, message content, hash of message content, and hash of particularly important features of the message, for example. Alternatively, multiple spam filters can be deployed rather than a single best spam filter.

    摘要翻译: 主题发明提供了系统和方法,其有助于混淆垃圾邮件过滤系统以阻止垃圾邮件过滤器的反向工程和/或减轻垃圾邮件发送者几乎每次都能始终获得通过垃圾邮件过滤器的消息。 该系统包括随机化组件,其在消息被分类为垃圾邮件或非垃圾邮件之前随机化消息得分,以掩盖垃圾邮件过滤器的功能。 随机化消息分数可以部分地通过在消息分数被分类为垃圾邮件或非垃圾邮件之前向消息得分添加随机数或伪随机数来完成。 附加的数量可以根据例如时间,用户,消息内容,消息内容的散列以及消息的特别重要的特征的散列中的至少一种输入而变化。 或者,可以部署多个垃圾邮件过滤器,而不是一个最好的垃圾邮件过滤器。

    MARK-UP ECOSYSTEM FOR SEARCHING
    57.
    发明申请
    MARK-UP ECOSYSTEM FOR SEARCHING 审中-公开
    标记生态系统搜索

    公开(公告)号:US20090006344A1

    公开(公告)日:2009-01-01

    申请号:US11770502

    申请日:2007-06-28

    IPC分类号: G06F7/00

    CPC分类号: G06F17/276 G06F16/90332

    摘要: Architecture for completing search queries by using artificial intelligence based schemes to infer search intentions of users. Partial queries are completed dynamically in real time. Additionally, search aliasing can also be employed. Custom tuning can be performed based on at least query inputs in the form of text, graffiti, images, handwriting, voice, audio, and video signals. Natural language processing occurs, along with handwriting recognition and slang recognition. The system includes a classifier that receives a partial query as input, accesses a query database based on contents of the query input, and infers an intended search goal from query information stored on the query database. A query formulation engine receives search information associated with the intended search goal and generates a completed formal query for execution.

    摘要翻译: 通过使用基于人工智能的方案来推断用户的搜索意图来完成搜索查询的架构。 部分查询是实时动态完成的。 此外,还可以使用搜索别名。 可以至少基于文本,涂鸦,图像,手写,语音,音频和视频信号的查询输入进行定制调整。 自然语言处理发生,手写识别和俚语识别。 该系统包括接收部分查询作为输入的分类器,基于查询输入的内容访问查询数据库,并从存储在查询数据库中的查询信息推断预期的搜索目标。 查询制定引擎接收与预期搜索目标相关联的搜索信息,并生成完成的正式查询以供执行。

    SCALABLE SUMMARIES OF AUDIO OR VISUAL CONTENT
    58.
    发明申请
    SCALABLE SUMMARIES OF AUDIO OR VISUAL CONTENT 审中-公开
    音频或视觉内容的可比性概要

    公开(公告)号:US20080300872A1

    公开(公告)日:2008-12-04

    申请号:US11756059

    申请日:2007-05-31

    IPC分类号: G10L15/26

    摘要: Providing for browsing a summary of content formed of keywords that can scale to a user-defined level of detail is disclosed herein. Components of a system can include a summarization component that extracts keywords related to the content and associates the keywords with portions thereof, and a zooming component that displays a number of keywords based on a keyword/keyphrase relevance rank and a zoom factor. Additionally, a speech to text component can translate speech associated with the content into text, wherein the keywords are extracted from the translated text. Consequently, the claimed subject matter can present a variable hierarchy of keywords to form a scalable summary of such recorded content.

    摘要翻译: 本文公开了提供浏览由缩放到用户定义的细节级别的关键字形成的内容的摘要。 系统的组件可以包括摘要组件,其提取与内容相关的关键词并将关键字与其部分相关联,以及缩放组件,其基于关键字/关键短语相关性等级和缩放因子显示多个关键字。 此外,对文本组件的语音可以将与内容相关联的语音翻译为文本,其中从翻译的文本中提取关键字。 因此,所要求保护的主题可以呈现关键词的可变层级以形成这种记录内容的可伸缩摘要。

    Probability estimate for K-nearest neighbor
    59.
    发明授权
    Probability estimate for K-nearest neighbor 有权
    K最近邻的概率估计

    公开(公告)号:US07451123B2

    公开(公告)日:2008-11-11

    申请号:US11296919

    申请日:2005-12-08

    IPC分类号: G06E1/00 G06F15/00

    CPC分类号: G06K9/6276

    摘要: Systems and methods are disclosed that facilitate producing probabilistic outputs also referred to as posterior probabilities. The probabilistic outputs include an estimate of classification strength. The present invention intercepts non-probabilistic classifier output and applies a set of kernel models based on a softmax function to derive the desired probabilistic outputs. Such probabilistic outputs can be employed with handwriting recognition where the probability of a handwriting sample classification is combined with language models to make better classification decisions.

    摘要翻译: 公开了有助于产生也称为后验概率的概率输出的系统和方法。 概率输出包括分类强度的估计。 本发明拦截非概率分类器输出并且基于softmax函数应用一组核心模型以导出所需的概率输出。 这样的概率输出可以与手写识别一起使用,其中手写样本分类的概率与语言模型组合以进行更好的分类决定。