Abstract:
Systems and methods are provided for dynamically protecting transportable articles in vehicles. A system for dynamically protecting a transportable article in a vehicle may include one or more processors and non-volatile memory storing instructions. The instructions, when executed by the one or more processors, cause the system to access sensed data representative of at least one of a characteristic or a trait of a transportable article in a vehicle, determine based on the data the at least one of the characteristic or the trait of the transportable article, select one or more article protection components based on the determined at least one of the characteristic or the trait of the transportable article, and deploy the selected one or more article protection components to protect the transportable article.
Abstract:
A system and method are provided for dynamically protecting one or more transportable articles in a vehicle. The system may include an interior data collection component configured to collect transportable article data representing one or more transportable articles in the vehicle, a plurality of article protections components configured to protect the one or more transportable articles when deployed, and one or more processors configured to determine, by processing the transportable data, one or more characteristic(s) and/or trait(s) of the one or more transportable articles; select a subset of the plurality of article protection components to deploy based on the one or more characteristic(s) and/or trait(s) of the one or more transportable articles; and deploy the selected subset of the plurality of article protection components to protect the one or more transportable articles.
Abstract:
A system and method for measuring a driver's actual driving behaviors (e.g., acceleration, deceleration) in a manual driving mode to determine their preferred driving style, and then causing an autonomous or semi-autonomous vehicle to operate itself, within limits, in accordance with the drivers' driving style when operating in a self-driving mode, thereby providing a more familiar and comfortable driving experience for the driver. Data is collected on the actual driving behavior, any pre-existing data is accessed on the actual driving behavior, and the collected data and the pre-existing data are combined. A custom control is then created based upon the combined data, and the custom control is applied to manage the self-driving behavior of the autonomous or semi-autonomous vehicle in a self-driving mode. Additional data continues to be collected on the actual driving behavior, and the custom control is adjusted based upon the collected additional data.
Abstract:
Driving skill data is gathered with one or more accelerometers during a driving session of a first student driver, including one or more of acceleration data, braking data, or steering data and wherein the driving skill data includes one or more of a timestamp or location stamp. A driving session report is generated with a computer processor. The driving session report includes a calculation of one or more of a student driver acceleration skill score based on the acceleration data, a student driver braking skill score based on the braking data, or a student driver steering skill score based on the steering data and storing the one or more scores on a computer-readable medium. The driving session report is displayed. Driving skill data may be gathered and driving session reports may be generated for subsequent student drivers.
Abstract:
The method, system, and computer-readable medium facilitates monitoring a vehicle operator, the environment ahead of the vehicle, and/or forces acting on the vehicle during the course of vehicle operation to determine whether the vehicle operator is impaired (e.g., distracted, drowsy), log data relating to vehicle operator impairment for further analysis, and send the data to a server for analysis. The method, system, and computer-readable medium may monitor the vehicle operator, the environment ahead of the vehicle, and/or forces acting on the vehicle using either or both of optical sensors or accelerometers. In particular, one optical sensor may monitor the vehicle operator to detect eye blinks, head nods, head rotations, and/or gaze fixation. Another optical sensor may monitor the road ahead of the vehicle to detect lane deviation, lane centering, and time to collision. The accelerometers may detect acceleration in the direction of vehicle travel and/or lateral acceleration. The data gathered by the various sensors may be scored to determine whether to change a property and casualty insurance rate charged to vehicle operator and/or vehicle owner and/or vehicle policy.
Abstract:
The method, system, and computer-readable medium facilitates monitoring one or more eyes of a vehicle operator during a driving session to generate a plurality of gaze location logs with gaze location values and timestamps. The gaze location value may be generated by determining a focal point of the vehicle operator's gaze, determining which of a plurality of areas of the vehicle is associated with the focal point, and assigning the gaze location value based on the area of the vehicle associated with the focal point. The gaze location logs may be analyzed to determine the duration of the vehicle operator's gaze at each area of the vehicle. Based on the duration of the vehicle operators gaze, recommendations to improve vehicle operator performance may be determined and communicated to the vehicle operator.