Abstract:
A scheduling method and apparatus using a non-orthogonal Connection IDentifier (CID) for use in a device-to-device communication system is provided. The scheduling method includes generating a non-orthogonal CID for communication with a counterpart terminal, determining slot indices for communication using the non-orthogonal CID, and communicating with the counterpart terminal through the slots indicated by the slot indices. The non-orthogonal CID-based scheduling method and apparatus is capable of selecting the slots for use in the non-orthogonal CID-based scheduling according to a rule so as to overcome CID collision in the system of using the non-orthogonal CID.
Abstract:
A method for supporting a device to device (D2D) communication in a base station of a mobile communication system according to one embodiment of the present specification comprises the steps of: determining one or more device groups including one or more devices among a plurality of devices; determining radio resources for measuring channels for the determined device groups; and transmitting, to the devices included in the respective groups, information on the radio resources for measuring the channels corresponding to the groups. According to the embodiment of the present specification, complexity of measuring a channel state in the D2D communication is reduced, and many more devices can measure the channel state using limited radio resources and can transmit and receive data. The present disclosure relates to re-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE).
Abstract:
The disclosure relates to a communication technique for convergence of an IoT technology and a 5G communication system for supporting a higher data transmission rate beyond a 4G system, and a system therefor. The disclosure can be applied to an intelligent service (for example, a smart home, a smart building, a smart city, a smart cart or connected car, health care, digital education, retail business, security and safety-related service, etc.) on the basis of a 5G communication technology and an IoT-related technology. The disclosure defines a mobility method for a terminal residing in a system in which transmission/reception points (TPRs), supporting solely some protocols among entire access stratum protocols comprising PHY, MAC, RLC, PDCP, and RRC, coexist in a wireless communication system. Specifically, the disclosure defines a method for dynamically changing, depending on determination by a base station, a beam and a transmission/reception point to be used for transmitting information to or receiving information from a terminal through a method in which a system using multiple beams notifies, in advance, of a measurement reference signal transmitted using transmission/reception points of different networks, to allow a terminal to select a required reception beam from a corresponding resource and measure beam information of each transmission/reception point, or a terminal transmits measured information as feedback in which each transmission/reception point is specified. Accordingly, the disclosure can provide a criterion of rapid and highly precise determination for changing a beam and a transmission/reception point and thus prevent a terminal from needlessly measuring and reporting, so as to achieve an effect of reduction in the power consumption of the terminal and reduction of delay in change of a transmission/reception point.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. This disclosure also relates to a cell reselection operation. A method of a terminal in a wireless communication system may include receiving a first scheduling information for a first frequency band from a base station, switching a bandwidth to the first frequency band according to the first scheduling information, starting a timer for the first frequency band, and switching the bandwidth to a second frequency band when the timer expires.
Abstract:
The present disclosure relates to a communication scheme for fusing IoT technology with a 5G communication system for supporting a data rate higher than that of a 4G system and subsequent systems thereafter. The present disclosure can be applied to intelligent services (for example, a smart home, a smart building, a smart city, a smart or connected car, healthcare, digital education, retail business, security and safety related services, and the like) on the basis of the 5G communication technology and IoT related technology. A method performed by a transmission terminal for transmitting a device-to-device (D2D) communication data is provided.
Abstract:
The present disclosure is related to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-Generation (4G) communication system such as Long Term Evolution. A method for operating a base station includes transmitting, to a terminal, configuration information for measuring a channel blockage status indicating a degree by which an unlicensed band is occupied by an interference node, receiving information regarding the channel blockage status measured based on the configuration information, transmitting, to the terminal, scheduling information regarding uplink resources generated based on the information regarding the channel blockage status, and receiving data from the terminal based on the scheduling information, wherein the configuration information comprises at least one of information regarding a measurement duration for measuring the channel blockage status, information regarding uplink resources allocated to measure the channel blockage status, and information regarding a channel occupancy time of the base station.
Abstract:
The present invention relates to a method and a device for selecting a cell in a mobile communication system and, more particularly, to a method and a device for selecting a cell for transmitting data, by a base station, not only in a licensed frequency band but in an unlicensed frequency band. In order to achieve the described task, a method for configuring a cell of a base station in a mobile communication system according to an embodiment of the present invention comprises the steps of: connecting with a terminal through a first cell of a licensed band; transmitting, to the terminal, a message for configuring multiple second cells in an unlicensed band through the first cell; and monitoring the configured multiple second cells in the unlicensed band, wherein the number of the multiple second cells exceeds the number of cells, a Carrier Aggregation (CA) of which the terminal can support. The present disclosure relates to a 5G or a pre-5G communication system to be provided in order to support a higher data transmission rate after a 4G communication system such as an LTE.
Abstract:
The present disclosure relates to a fifth generation (5G) or pre-5G communication system to be provided to support a higher data transmission rate since fourth generation (4G) communication systems like long term evolution (LTE). A method for generating cell measurement information is provided. The method includes receiving measurement configuration information associated with a beam reference signal that is a beamformed reference signal, receiving beam reference signals per a plurality of beam pairs consisting of a base station's (5G-NB's) beam and a user equipment's (UE's) beam, generating beam measurement information based on the beam reference signals received per the plurality of beam pairs, and generating cell measurement information on a cell based on the beam measurement information.
Abstract:
A communication method and a system for converging a 5th-generation (5G) communication system for supporting higher data rates beyond a 4th-generation (4G) system with a technology for internet of things (IoT) are provided. The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, etc. The method includes receiving a radio resource control (RRC) message including first information associated with a reference signal for a radio link monitoring (RLM) and second information associated with a threshold for the RLM, monitoring a radio link quality of at least one reference signal indicated by the first information, comparing the radio link quality of the at least one reference signal with the threshold and indicating an in-sync or an out-of-sync to a higher layer of the terminal based on the comparison result.
Abstract:
The present disclosure relates to a 5th generation (5G) or pre-5G communication system for supporting a higher data rate in comparison to the 4G communication system, such as long term evolution (LTE). A method for a terminal to establish synchronization with another terminal in a network supporting device-to-device (D2D) communication is provided. The method includes scanning, at the terminal, for synchronization signals from at least one base station, acquiring, when a synchronization signal is received from a base station, synchronization with the base station based on the synchronization signal, measuring power of the synchronization signal received from the base station, and transmitting, when data to be transmitted are generated in idle mode and the received signal power is less than a received signal power, a synchronization signal as a synchronization relaying terminal.