Abstract:
Substituted di-arylhydantoin and di-arylthiohydantoins are provided and may find use as androgen receptor modulators. The compounds may find particular use in treating prostate cancer, including CRPC and/or hormone-sensitive prostate cancer.
Abstract:
This disclosure relates to new compounds that may be used to modulate a histamine receptor in an individual. Novel compounds are described, including new bridged heterocyclic [4,3-b]indole compounds. Pharmaceutical compositions are also provided. Pharmaceutical compositions comprising the compounds are also provided, as are methods of using the compounds in a variety of therapeutic applications, including the treatment of a cognitive disorder, psychotic disorder, neurotransmitter-mediated disorder and/or a neuronal disorder.
Abstract:
Hydrogenated pyrido[4,3-b]indoles, pyrido[3,4-b]indoles and azepino[4,5-b]indoles are described. The compounds may bind to and are adrenergic receptor α2B antagonists. The compounds may also bind to and antagonize adrenergic receptor α1B. The compounds may find use in therapy, e.g., to (i) reduce blood pressure and/or (ii) promote renal blood flow and/or (iii) decrease or inhibit sodium reabsorption. The compounds may also be used to treat diseases or conditions that are, or are expected to be, responsive to a decrease in blood pressure. Use of the compounds to treat cardiovascular and renal disorders is particularly described.
Abstract:
This disclosure relates to new heterocyclic compounds that may be used to modulate a histamine receptor in an individual. Pyrido[4,3-b]indoles are described, as are pharmaceutical compositions comprising the compounds and methods of using the compounds in a variety of therapeutic applications, including the treatment of a cognitive disorder, psychotic disorder, neurotransmitter-mediated disorder and/or a neuronal disorder.
Abstract:
This disclosure relates to new heterocyclic compounds that may be used to modulate a histamine receptor in an individual. Pyrido[3,4-b]indoles are described, as are pharmaceutical compositions comprising the compounds and methods of using the compounds in a variety of therapeutic applications, including the treatment of a cognitive disorder, psychotic disorder, neurotransmitter-mediated disorder and/or a neuronal disorder.
Abstract:
This disclosure relates to new azepino[4,5-b]indole compounds that may be used to modulate a histamine receptor in an individual. Novel compounds are described, including new 1,2,3,4,5,6-tetrahydroazepino[4,5-b]indoles. Pharmaceutical compositions are also provided.
Abstract:
The invention is directed to methods to inhibit TGF-β and/or p38-α kinase using compounds of the formula or the pharmaceutically acceptable salts thereof wherein R3 is a noninterfering substituent; each Z is CR2 or N, wherein no more than two Z positions in ring A are N, and wherein two adjacent Z positions in ring A cannot be N; each R2 is independently a noninterfering substituent; L is a linker; n is 0 or 1; and Ar′ is the residue of a cyclic aliphatic, cyclic heteroaliphatic, aromatic or heteroaromatic moiety optionally substituted with 1-3 noninterfering substituents.
Abstract:
Quinazoline derivatives have the formula: or the pharmaceutically acceptable salts thereof; wherein each of Z5, Z6, Z7 and Z8 is N or CH and wherein one or two Z5, Z6, Z7 and Z8 are N and wherein two adjacent Z positions cannot be N; wherein m and n are each independently 0–3; wherein R1 is independently OH, SH, NH2, OR, SR, NHR, halo or R-halide; wherein two adjacent R1 groups may be joined to form an aliphatic hetero cycle ring of 5–6 members; wherein R2 is independently R, halo, R-halide, OR-halide, NH2, CONH2 or CONHR; wherein R is optionally substituted C1–C12 alkyl, C1–C12 alkenyl, C1–C12 alkynyl, or aryl C1–C12 alkyl, containing 0–4 heteroatoms in place of a carbon in the carbon backbone, where the optional substituents are ═O, ═N, or OH; and wherein R3 is H or CH3. Such compounds are useful in pharmaceutical compositions and methods of treating conditions characterized by enhanced TGFβ activity.
Abstract:
The invention is directed to methods to inhibit p38-α kinase using compounds which contain a phenyl group linked through a piperazine ring to a substituted indole.
Abstract:
The invention is directed to methods to inhibit TGF-&bgr; and/or p38-&agr; kinase using compounds of the formula or the pharmaceutically acceptable salts thereof wherein R3 is a noninterfering substituent; each Z is CR2 or N, wherein no more than two Z positions in ring A are N, and wherein two adjacent Z positions in ring A cannot be N; each R2 is independently a noninterfering substituent; L is a linker; n is 0 or 1; and Ar′ is the residue of a cyclic aliphatic, cyclic heteroaliphatic, aromatic or heteroaromatic moiety optionally substituted with 1-3 noninterfering substituents.