Abstract:
Improved portable power sources such as batteries, fuel cells, power generators and the like can include structure or apparatus that are adapted to provide an indication of the power capacity remaining within the portable power source. In some cases, these power sources may be configured to accommodate remote communication regarding their remaining power capacity.
Abstract:
Embodiments of the present invention relate to a power generator comprising one or more fuel cells and a fuel, wherein the fuel comprises an alkali metal silicide.
Abstract:
A portable fuel cell charger has a water source and an electrolyzer coupled to the water source and adapted to be coupled to a power source. A fuel cell cartridge coupler is coupled to the electrolyzer and is adapted to be coupled to a fuel cell cartridge for providing pressurized hydrogen from the electrolyzer to the fuel cell cartridge.
Abstract:
An example fuel cell assembly may include a shaped fuel source that is formed into a desired shape. The shaped fuel source may have an outer surface, and a fuel cell may be mounted directly on the outer surface of the shaped fuel source. In some instances, the fuel cell assembly may also include one or more of a cathode cap, an anode cap, a refill port, and an outer shell disposed around an exterior of the fuel cell assembly, but these are not required.
Abstract:
Devices and methods for power generation via combined fuel thermolysis and hydrolysis are described herein. For example, one or more embodiments include a housing that includes an air intake, a fuel cartridge adapted to be removably placed within the housing, wherein the fuel cartridge includes a heating element configured to heat a fuel located in the fuel cartridge to cause a release of hydrogen from the fuel, an air conduit disposed about the fuel cartridge in the housing, wherein the air conduit includes a fuel cell portion and a water vapor permeable, hydrogen impermeable membrane portion, and the air conduit is configured to direct oxygen from the air intake to the fuel cell portion and to carry water vapor generated by the fuel cell portion past the membrane portion such that water vapor passes through the membrane portion and causes release of hydrogen from the fuel cartridge.
Abstract:
A power generator includes a case having a surface with a perforation and a cavity containing a gas generating fuel. A membrane is supported by the case inside the cavity, the membrane having an impermeable valve plate positioned proximate the perforation, wherein the membrane is water vapor permeable and gas impermeable and flexes responsive to a difference in pressure between the cavity and outside the cavity to selectively allow water vapor to pass through the perforation to the fuel as a function of the difference in pressure. A fuel cell membrane is supported by the case and positioned to receive hydrogen at an anode side of the fuel cell membrane and to receive oxygen from outside the power generator at a cathode side of the fuel cell membrane.
Abstract:
A power generator includes a hydrogen producing fuel in a first high pressure chamber. A fuel cell having a proton exchange membrane is disposed in a second low pressure chamber. A water absorbing material provides water vapor to the hydrogen producing fuel, and a plurality of valves control hydrogen provided to the fuel cell from the first high pressure chamber, and exposure of the water absorbing material to ambient and the high pressure chamber.
Abstract:
A power generator comprises a hydrogen producing fuel, multiple fuel cells arranged in a ring, and a rotatable ring valve. Each fuel cell has a proton exchange membrane and an opening separating the hydrogen producing fuel from ambient. The rotatable ring valve has multiple openings corresponding to the openings of the fuels cells such that ambient water is controllably prevented from entering the fuel cell by rotation of the ring valve.
Abstract:
A fuel source for an electrochemical cell includes two or more chemical hydride pellets, a flexible, porous, liquid water impermeable, hydrogen and water vapor permeable membrane in contact with and at least partially surrounding each hydride pellet, and a porous metal hydride layer positioned between each hydride pellet. Air gaps are between each pellet.
Abstract:
An apparatus includes a plurality of islands each carrying multiple cantilevers. The apparatus also includes a fluidic network having a plurality of channels separating the islands. The channels are configured to provide fluid to the islands, and the fluid at least partially fills spaces between the cantilevers and the islands. Heat from the islands vaporizes the fluid filling the spaces between the cantilevers and the islands to transfer the heat away from the islands while driving the cantilevers into oscillation. The apparatus may also include a casing configured to surround the islands and the fluidic network to create a vapor chamber, where the vapor chamber is configured to retain the vaporized fluid. The islands and the fluidic network could be formed in a single substrate, or the islands could be separate and attached together by a binder located within the channels of the fluidic network.