Abstract:
The pixel in a transflective color LCD panel of the present invention has an additional sub-pixel area. According to the present invention, a pixel is selectively divided into at least three color sub-pixels in R, G, B and a fourth sub-pixel M. Each of the color sub-pixels R, G and B is selectively divided into a transmission area and a reflection area. The fourth sub-pixel M can be entirely reflective or partially reflective. The color filter for use in the pixel comprises R, G, B color filter segments corresponding to the R, G, B color sub-pixels and a filter segment for the fourth sub-pixel. The filter segment for the fourth sub-pixel can be entirely colorless or partially colorless. Furthermore, one or more of the R, G, B color filer segments associated with the reflection area may have a colorless sub-segment.
Abstract:
A liquid crystal display (LCD) panel including a first substrate, a second substrate, a liquid crystal layer, and a pixel array structure is provided. The first substrate includes a plurality of scan lines and a plurality of data lines, and the second substrate includes a common electrode. The liquid crystal layer is disposed between the first substrate and the second substrate. The pixel array structure includes a plurality of pixel units and a plurality of protrusions. The pixel units are arranged as an array, and each pixel unit includes an active device and a pixel electrode electrically connected the active device, wherein the pixel electrode has a plurality of electrode sections. The protrusions are substantially located in at least one junction region of the electrode sections. The liquid crystal molecules in the LCD panel have fast response speed and correct arrangement direction.
Abstract:
A color filter substrate and an LCD applying the same are provided. This color filter substrate has a plurality of color filters with overlap regions acting as black matrix. Subsequently, patterned regions are defined in part of the overlap regions. After formation of a planarization layer and a conductive layer, spacers are formed overlying the patterned regions. The spacers may not shield the transparent region of the color filters, thereby enhancing the aperture ratio of the color filter substrate. Additionally, the thickness of planarization layer in the patterned regions is not influenced by the overlap of the color filters, such that the spacers thereon have a uniform height.
Abstract:
A liquid crystal panel comprising a plurality of pixels arranged in a matrix. Each pixel comprises a red sub-pixel, a green sub-pixel, a blue sub-pixel, and an auxiliary sub-pixel with a transflective area.
Abstract:
A display capable of providing 2D and/or 3D images. The display comprises a liquid crystal display device and a self-emissive display device. The self-emissive display device is disposed on the rear of the liquid crystal display device, in which the liquid crystal display device provides a first image and the self-emissive display device a second image and a backlight source. One of the first and second images comprises a parallax barrier pattern for forming a three-dimensional (3D) image, and the other is a 2D image.
Abstract:
The pixel in a transflective color LCD panel of the present invention has an additional sub-pixel area. According to the present invention, a pixel is selectively divided into at least three color sub-pixels in R, G, B and a fourth sub-pixel M. Each of the color sub-pixels R, G and B is selectively divided into a transmission area and a reflection area. The fourth sub-pixel M can be entirely reflective or partially reflective. The color filter for use in the pixel comprises R, G, B color filter segments corresponding to the R, G, B color sub-pixels and a filter segment for the fourth sub-pixel. The filter segment for the fourth sub-pixel can be entirely colorless or partially colorless. Furthermore, one or more of the R, G, B color filer segments associated with the reflection area may have a colorless sub-segment.
Abstract:
In a process of forming a LCD cell structure, an electrode layer provided with a recessed portion is formed over a substrate, and a transparent dielectric layer is formed to cover the recessed portion of the pixel electrode layer. The recessed portion of the electrode layer acts to distort an electric field created in the liquid crystal of the LCD system for image displaying, while the transparent dielectric layer eliminates the boundary conditions created by the concavity of the recessed portion of the electrode layer.
Abstract:
A transflective pixel structure is provided. The transflective pixel structure includes an active device, a storage capacitor, a transparent electrode, and a first reflective electrode. The storage capacitor includes a bottom electrode, a floating electrode, and an upper electrode. The upper electrode is disposed above the bottom electrode and the floating electrode and electrically connected to the active device. The transparent electrode is electrically connected to the upper electrode. The first reflective electrode is electrically connected to the floating electrode and electrically insulated from the transparent electrode. As mentioned above, the transflective pixel structure can improve the image quality of a transflective liquid crystal display panel with single cell gap.
Abstract:
A transflective liquid crystal display device implementing a color filter having various thicknesses. An insulating layer is formed on a lower substrate. A lower electrode is formed on the insulating layer, wherein the lower electrode has a transmissive portion and a reflective portion. An upper substrate opposing the lower substrate is provided, wherein a side of the upper substrate has a color filter having various thicknesses. A planarization layer is formed on the color filter, wherein the planarization layer is opposite to the lower substrate. An upper electrode is formed on the planarization layer. A liquid crystal layer is interposed between the upper and lower substrates.
Abstract:
A pixel structure is formed in a pixel area and coupled to a scan line and a data line. The pixel structure includes a first transistor, a second transistor and a pixel electrode. The first transistor is formed in the pixel area and coupled to the scan line and the data line. The second transistor is formed in the pixel area and coupled to the first transistor. The pixel electrode is formed in the pixel area and coupled to the second transistor. The pixel electrode includes a main portion and a first branch portion. The first branch portion is disposed between the first transistor and the second transistor. An electrophoretic display including the pixel structure is also disclosed herein.