Abstract:
A process using oxide supporter for manufacturing a capacitor lower electrode of a micron stacked DRAM is disclosed. First, form a stacked structure. Second, form a photoresist layer on an upper oxide layer and then etch them. Third, deposit a polysilicon layer onto the upper oxide layer and the nitride layer. Fourth, deposit a nitrogen oxide layer on the polysilicon layer and the upper oxide layer. Sixth, partially etch the nitrogen oxide layer, the polysilicon layer and the upper oxide layer to form a plurality of vias. Seventh, oxidize the polysilicon layer to form a plurality of silicon dioxides surround the vias. Eighth, etch the nitride layer, the dielectric layer and the lower oxide layer beneath the vias. Ninth, form a metal plate and a capacitor lower electrode in each of the vias. Tenth, etch the nitrogen oxide layer, the polysilicon layer, the nitride layer and the dielectric layer.
Abstract:
A method for manufacturing a memory includes first providing a substrate with a horizontally adjacent control gate region and floating gate region which includes a sacrificial layer and sacrificial sidewalls, removing the sacrificial layer and sacrificial sidewalls to expose the substrate, forming dielectric sidewalls adjacent to the control gate region, forming a floating gate dielectric layer on the exposed substrate and forming a floating gate layer adjacent to the dielectric sidewalls and on the floating gate dielectric layer.
Abstract:
A method for fabricating the memory structure includes: providing a substrate having a pad, forming an opening in the pad, forming a first spacer on a sidewall of the opening, filling the opening with a sacrificial layer, removing the first spacer and exposing a portion of the substrate, removing the exposed substrate to define a first trench and a second trench, removing the sacrificial layer to expose a surface of the substrate to function as a channel region, forming a first dielectric layer on a surface of the first trench, a surface of the second trench and a surface of the channel region, filling the first trench and the second trench with a first conductive layer, forming a second dielectric layer on a surface of the first conductive layer and the surface of the channel region, filling the opening with a second conductive layer, and removing the pad.
Abstract:
A non-volatile memory disposed on a substrate includes active regions, a memory array, and contacts. The active regions defined by isolation structures disposed in the substrate are extended in a first direction. The memory array is disposed on the substrate and includes memory cell columns, control gate lines and select gate lines. Each of the memory cell columns includes memory cells connected to one another in series and a source/drain region disposed in the substrate outside the memory cells. The contacts are disposed on the substrate at a side of the memory array and arranged along a second direction. The second direction crosses over the first direction. Each of the contacts extends across the isolation structures and connects the source/drain regions in the substrate at every two of the adjacent active regions.
Abstract:
A method of manufacturing a non-volatile memory is provided. In the method, a first dielectric layer, a first conductive layer, and a first cap layer are formed sequentially on a substrate. The first cap layer and the first conductive layer are patterned to form first gate structures. A second dielectric layer is formed on the sidewall of the first gate structures, and a portion of the first dielectric layer is removed to expose the substrate between the first gate structures. An epitaxy layer is formed on the substrate between two first gate structures. A third dielectric layer is formed on the epitaxy layer. A second conductive layer is formed on the third dielectric layer. The first cap layer and a portion of the first conductive layer are removed to form second gate structures. Finally, a doped region is formed in the substrate at two sides of the second gate structures.
Abstract:
A flash memory is provided. A sawtooth gate conductor line, which interconnects the select gates of the select gate transistors arranged on the same column is provided. The sawtooth gate conductor line, which is disposed on both distal ends of a memory cell string, increases the integration of the flash memory. The sawtooth gate conductor line results in select gate transistors having different select gate lengths and produces at least one depletion-mode select transistor at one side of the memory cell string. The select gate transistor of the depletion-mode is always turned on.
Abstract:
A programmable memory structure includes a substrate, an active area, a common-source and a common-drain respectively disposed on each side of the active area, a first and a second source contact electrically connected to the common-source, a first and a second drain contact electrically connected to the common-drain, and between the first and the second source contact and the first and the second drain contact a plurality of programmable memory cells including a first and a second dielectric layer respectively encapsulating a first and a second floating gate.
Abstract:
A method for manufacturing a flash memory includes providing a substrate with a sacrificial oxide layer, a sacrificial poly-Si layer, a hard mask layer and a trench exposing part of the substrate and filled with an oxide layer, later depositing a oxide layer conformally on the sacrificial oxide layer and the oxide layer, and afterwards removing the oxide layer on the sacrificial oxide layer and on the top of the oxide layer and the sacrificial oxide layer to form a spacer as a STI oxide spacer.
Abstract:
The invention provides a dynamic random access memory (DRAM) with an electrostatic discharge (ESD) region. The upper portion of the ESD plug is metal, and the lower portion of the ESD plug is polysilicon. This structure may improve the mechanical strength of the ESD region and enhance thermal conductivity from electrostatic discharging. In addition, the contact area between the ESD plugs and the substrate can be reduced without increasing aspect ratio of the ESD plugs. The described structure is completed by a low critical dimension controlled patterned photoresist, such that the processes and equipments are substantially maintained without changing by a wide margin.
Abstract:
A method for manufacturing a flash memory includes providing a substrate with a sacrificial oxide layer, a sacrificial poly-Si layer, a hard mask layer and a trench exposing part of the substrate and filled with an oxide layer, later depositing a oxide layer conformally on the sacrificial oxide layer and the oxide layer, and afterwards removing the oxide layer on the sacrificial oxide layer and on the top of the oxide layer and the sacrificial oxide layer to form a spacer as a STI oxide spacer.