-
51.
公开(公告)号:US20250011866A1
公开(公告)日:2025-01-09
申请号:US18626712
申请日:2024-04-04
Inventor: Jesse Salk , Lawrence A. Loeb , Michael Schmitt
IPC: C12Q1/6876 , C12Q1/6806 , C12Q1/6869
Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand. This method uniquely capitalizes on the redundant information stored in double-stranded DNA, thus overcoming technical limitations of prior methods utilizing data from only one of the two strands.
-
52.
公开(公告)号:US20240368691A1
公开(公告)日:2024-11-07
申请号:US18651651
申请日:2024-04-30
Inventor: Jesse Salk , Lawrence A. Loeb , Michael Schmitt
IPC: C12Q1/6876 , C12Q1/6806 , C12Q1/6869
Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand. This method uniquely capitalizes on the redundant information stored in double-stranded DNA, thus overcoming technical limitations of prior methods utilizing data from only one of the two strands.
-
53.
公开(公告)号:US20240368690A1
公开(公告)日:2024-11-07
申请号:US18651577
申请日:2024-04-30
Inventor: Jesse Salk , Lawrence A. Loeb , Michael Schmitt
IPC: C12Q1/6876 , C12Q1/6806 , C12Q1/6869
Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand. This method uniquely capitalizes on the redundant information stored in double-stranded DNA, thus overcoming technical limitations of prior methods utilizing data from only one of the two strands.
-
54.
公开(公告)号:US11970740B2
公开(公告)日:2024-04-30
申请号:US17392193
申请日:2021-08-02
Inventor: Jesse Salk , Lawrence A. Loeb , Michael Schmitt
IPC: C12Q1/6876 , C12Q1/6806 , C12Q1/6869
CPC classification number: C12Q1/6876 , C12Q1/6806 , C12Q1/6869 , C12Q1/6869 , C12Q2525/179 , C12Q2525/185 , C12Q2525/191 , C12Q2535/119 , C12Q1/6806 , C12Q2525/191 , C12Q2535/119 , C12Q2535/122 , C12Q2563/179 , C12Q2565/514
Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand. This method uniquely capitalizes on the redundant information stored in double-stranded DNA, thus overcoming technical limitations of prior methods utilizing data from only one of the two strands.
-
55.
公开(公告)号:US11667972B2
公开(公告)日:2023-06-06
申请号:US17392180
申请日:2021-08-02
Inventor: Jesse Salk , Lawrence A. Loeb , Michael Schmitt
IPC: C12Q1/68 , C12Q1/6876 , C12Q1/6806 , C12Q1/6869
CPC classification number: C12Q1/6876 , C12Q1/6806 , C12Q1/6869 , C12Q1/6869 , C12Q2525/179 , C12Q2525/185 , C12Q2525/191 , C12Q2535/119 , C12Q1/6806 , C12Q2525/191 , C12Q2535/119 , C12Q2535/122 , C12Q2563/179 , C12Q2565/514
Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand. This method uniquely capitalizes on the redundant information stored in double-stranded DNA, thus overcoming technical limitations of prior methods utilizing data from only one of the two strands.
-
56.
公开(公告)号:US11643686B2
公开(公告)日:2023-05-09
申请号:US17392193
申请日:2021-08-02
Inventor: Jesse Salk , Lawrence A. Loeb , Michael Schmitt
IPC: C12Q1/6876 , C12Q1/6806 , C12Q1/6869
CPC classification number: C12Q1/6876 , C12Q1/6806 , C12Q1/6869 , C12Q1/6869 , C12Q2525/179 , C12Q2525/185 , C12Q2525/191 , C12Q2535/119 , C12Q1/6806 , C12Q2525/191 , C12Q2535/119 , C12Q2535/122 , C12Q2563/179 , C12Q2565/514
Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand. This method uniquely capitalizes on the redundant information stored in double-stranded DNA, thus overcoming technical limitations of prior methods utilizing data from only one of the two strands.
-
57.
公开(公告)号:US11566287B2
公开(公告)日:2023-01-31
申请号:US17392180
申请日:2021-08-02
Inventor: Jesse Salk , Lawrence A. Loeb , Michael Schmitt
IPC: C12Q1/68 , C12Q1/6876 , C12Q1/6806 , C12Q1/6869
Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand. This method uniquely capitalizes on the redundant information stored in double-stranded DNA, thus overcoming technical limitations of prior methods utilizing data from only one of the two strands.
-
58.
公开(公告)号:US11549144B2
公开(公告)日:2023-01-10
申请号:US17392185
申请日:2021-08-02
Inventor: Jesse Salk , Lawrence A. Loeb , Michael Schmitt
IPC: C12Q1/6876 , C12Q1/6806 , C12Q1/6869
Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand. This method uniquely capitalizes on the redundant information stored in double-stranded DNA, thus overcoming technical limitations of prior methods utilizing data from only one of the two strands.
-
59.
公开(公告)号:US11130996B2
公开(公告)日:2021-09-28
申请号:US16119471
申请日:2018-08-31
Inventor: Jesse Salk , Lawrence A. Loeb , Michael Schmitt
IPC: C12Q1/68 , C12Q1/6876 , C12Q1/6806 , C12Q1/6869
Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand. This method uniquely capitalizes on the redundant information stored in double-stranded DNA, thus overcoming technical limitations of prior methods utilizing data from only one of the two strands.
-
60.
公开(公告)号:US11098359B2
公开(公告)日:2021-08-24
申请号:US16118290
申请日:2018-08-30
Inventor: Jesse Salk , Lawrence A. Loeb , Michael Schmitt
IPC: C12Q1/68 , C12Q1/6876 , C12Q1/6806 , C12Q1/6869
Abstract: Next Generation DNA sequencing promises to revolutionize clinical medicine and basic research. However, while this technology has the capacity to generate hundreds of billions of nucleotides of DNA sequence in a single experiment, the error rate of approximately 1% results in hundreds of millions of sequencing mistakes. These scattered errors can be tolerated in some applications but become extremely problematic when “deep sequencing” genetically heterogeneous mixtures, such as tumors or mixed microbial populations. To overcome limitations in sequencing accuracy, a method Duplex Consensus Sequencing (DCS) is provided. This approach greatly reduces errors by independently tagging and sequencing each of the two strands of a DNA duplex. As the two strands are complementary, true mutations are found at the same position in both strands. In contrast, PCR or sequencing errors will result in errors in only one strand. This method uniquely capitalizes on the redundant information stored in double-stranded DNA, thus overcoming technical limitations of prior methods utilizing data from only one of the two strands.
-
-
-
-
-
-
-
-
-