摘要:
A fuel cell system optimizing the ratio of width of a channel to a width of a rib forming a passage for supplying fuel and air, the ratio of width thereof to a height of a channel, and the number of passages, thereby improving the fuel diffusing performance and reducing a pressure drop therein is provided. The fuel cell system includes at least one stack for generating electrical energy by an electrochemical reaction between hydrogen and oxygen, a fuel supply portion for supplying fuel to the stack, and an oxygen supply portion for supplying oxygen to the stack. The stack is formed into a stacked configuration having a plurality of membrane electrode assemblies separated by separators. The separators have ribs which closely contact the adjacent membrane electrode assemblies and form channels through which the oxygen and hydrogen flow. The ratio of the width of a channel to the height of the same is between about 0.6 and about 0.8.
摘要:
Disclosed are a fuel cell system, and a method of driving the system. The fuel cell system includes a fuel cell stack having a plurality of unit cells producing electricity, a switching unit connecting the plurality of unit cells to a discharge resistor, a switching controller synchronously operated when the voltage of the fuel cell stack reaches an open circuit voltage after power generation of the fuel cell stack is stopped. The switching controller generates select control signals to control the switching unit. The fuel cell system further includes a sensing unit measuring respective cell voltages of the plurality of unit cells and generating cell voltage sensing signals to control activation periods of the select control signals.
摘要:
A stack for a mixed oxidant fuel cell and a mixed oxidant fuel cell system including the stack. The stack includes at least one membrane-electrode assembly that includes a polymer electrolyte membrane, an anode and a cathode disposed on opposite sides of the polymer electrolyte membrane, and an electrode substrate disposed on at least one of the anode or the cathode; and an oxidant supply path and a fuel supply path that penetrate the membrane-electrode assembly. The oxidant supply path has both ends open, and the fuel supply path has one end open and the other end closed. The stack of the present invention can improve fuel cell efficiency by smoothly supplying a fuel and an oxidant. Particularly, since the stack is configured to supply the fuel and the oxidant without using a pump, it can make a fuel cell small and light.
摘要:
A fuel cell module having a composite collector includes a hollow, cylindrical unit cell including a first electrode layer, an electrolyte layer, and a second electrode layer arranged in a radial direction of the hollow, cylindrical unit cell; a current collector including a metal material mesh or conducting line located on an outer circumference of the second electrode layer; and a plurality of auxiliary current collectors including ceramic material powders located on a surface of the current collector.
摘要:
A solid oxide fuel cell is provided. The solid oxide fuel cell has a structure in which a separate thermal expansion member is provided in a current collecting body formed on the inner circumferential surface of a first electrode so that the uniform contact between a support body of the first electrode and the current collecting body can be maintained even though the internal diameter of the support body of the first electrode is changed. Accordingly, the current collection performance of the current collecting body is enhanced through the thermal expansion member between the first electrode and the current collecting body, thereby improving the entire performance of the fuel cell.
摘要:
A solid oxide fuel cell and a brazing method between a cell and a cap of a fuel cell capable of simplifying a brazing process relative to the related art are disclosed. Thus, improved production efficiency and an air seal while saving on the amount of filler metal used is achieved, by improving the structure of the sealing cap combined with the end of the cell. The solid oxide fuel cell includes a hollow tube type cell and a sealing cap combined with the end of the cell, the cap has a structure in which a passage tube which is in contact with a hollow portion of the cell is provided in the center of the cap and a combination tube combined with the cell end is integrally provided on the circumference of the passage tube to form a cell insertion space between the passage tube and the combination tube, and a brazing surface formed on the bottom of the cell insertion space and a filler metal diffusion space formed at the side of the brazing surface.
摘要:
A fuel cell system includes a fuel supply, an air supply, a plurality of unit cells being stacked, and a stack. The stack includes: a plurality of unit cells, each comprising separators and a membrane assembly (MEA) disposed between the separators; a fuel inlet configured to introduce a fuel to the unit cell; an unreacted fuel outlet configured to emit unreacted fuel from the stack; a fuel bypass path; a fuel distribution path configured to distribute the fuel to each of the unit cells; and an unreacted fuel inducing path configured to channel the unreacted fuel to the unreacted fuel outlet.
摘要:
A membrane-electrode assembly for a mixed reactant fuel cell system is provided. The membrane-electrode assembly does not require a separator that physically separates the membrane-electrode assemblies from each other in a stack. The membrane-electrode assembly of the present invention instead includes an electrode substrate that is disposed on a surface of an anode or a cathode of the membrane-electrode assembly. The electrode substrate has a flow path, through which a fuel and an oxidant are supplied. The fuel and oxidant are absorbed into the electrode substrate and further into the anode and the cathode. The fuel and the oxidant are selectively oxidized and reduced in the anode and the cathode, respectively, to produce electricity.
摘要:
A method of driving a fuel cell system according to embodiments of the present invention includes supplying a first amount of oxidizer (which is less than a normal amount of oxidizer) to a fuel cell stack while continuously supplying fuel to the fuel cell stack, supplying a second amount of oxidizer (which is more than the normal amount) to the fuel cell stack, and supplying a third amount of oxidizer (which is the normal amount of oxidizer supplied in a normal driving state) to the fuel cell stack.
摘要:
The polymer electrolyte membrane of the present invention includes a porous supporter having pores, and a metal ion adsorptive material and a proton conductive polymer which are present in the pores of the porous supporter.