Abstract:
A thermo-optic switch using a small drive power while exhibiting a reduction in the coupling loss caused by the coupling to optical fibers and a switch speed of several hundred microseconds or less. A method for manufacturing the thermo-optic switch and a method for changing an optical line switching using the thermo-optic switch are also disclosed. The thermo-optic switch includes a substrate having etched portions at regions respectively corresponding to input and output terminals of the thermo-optic switch, a lower clad layer formed over the substrate, the lower clad layer having an input taper formed at the region corresponding to the input terminal and adapted to convert a circular mode, input from an optical fiber connected to the input terminal, into an oval mode having a rib shape, and an output taper formed at the region corresponding to the output terminal and adapted to convert the oval mode into a circular mode allowed to be input to an optical fiber connected to the output terminal, a core layer formed over the lower clad layer and provided with branched waveguides having a rib structure, the branched waveguides selectively receiving the oval mode from the input taper and outputting the received oval mode to the output taper, an upper clad layer formed over the core layer, and switching electrodes formed on the upper clad layer and selectively activated to apply heat to an associated one of the branched waveguides in such a fashion that an effective refractive index difference occurs between the branched waveguides, thereby causing the branched waveguides to selectively receive the oval mode from the input taper.
Abstract:
An erbium doped fiber amplifier has a shape of the gain spectrum which is independent of the operating conditions by using a gain medium with this property. The gain medium can be an erbium-doped fiber with a wavelength-independent gain swing over a range of wavelengths (especially a low Al.sup.3+ -content aluminogermanosilicate EDF). As an alternative, the gain medium can consist of at least two pieces of EDFs, so that changes of the shape of the gain spectra (induced by changes of the operating conditions) in the different types of EDFs effectively offset each other. Within an overlapping wavelength range, the gain spectrum can then be further modified in a power-independent way (i.e.--independent of operating conditions) so as to make the gain spectrum flat (i.e.--gain wavelength-independent) by means of one or several optical filter(s) placed before and/or after the gain medium, and/or distributed along the gain medium, or by means of a "filtering EDF", specially selected in a constant population inversion region of the EDFA. The gain spectrum thus obtained is both flat and independent of operating conditions so that a dynamic gain flatness which is independent of input signal power, operating gain, and population inversion is realized. As a desired consequence of the dynamic gain flatness, the gain of different channels in a WDM system will always be equal, irrespective of the operating conditions. Furthermore, AC gain tilt will be eliminated for analog AM CATV systems.
Abstract:
A method of fabricating a semiconductor device includes forming a first fin-shaped pattern having a first fin mask pattern disposed thereon on a substrate, forming a second fin-shaped pattern having a second fin mask pattern disposed thereon on the substrate, forming a first trench by removing the first fin mask pattern, forming a fin-cut mask pattern filling the first trench, and removing the second fin mask pattern and the second fin-shaped pattern using the fin-cut mask pattern as a first etch mask.
Abstract:
A light emitting module includes a light emitting chip generating light, a case and a lead frame. The case includes a bottom plate and sidewalls connected to the bottom plate. The bottom plate and the sidewalls define a receiving space in which the light emitting chip is received. The light is emitted in a first direction through an opening portion opposite to the bottom plate. The lead frame includes an electrode portion disposed in the case, and electrically connected to the light emitting chip, a connecting portion extending from the electrode portion and disposed outside of the case, a mounted portion disposed adjacent to the connecting portion, and a buffering portion disposed between the connecting portion and the mounted portion. The buffering portion has a generally nonlinear shape protruding in a direction substantially perpendicular to the first direction.
Abstract:
A backlight assembly includes a light guide plate, a light source assembly disposed adjacent to at least one side of the light guide plate and supplies light to the light guide plate, a container receiving the light guide plate and the light source assembly and including a bottom portion and a first sidewall extended from edges of the bottom portion to form a receiving space, and a coupling member disposed inside the receiving space of the container, and overlapping an upper surface of the light source assembly. The light source assembly is disposed adjacent to the first sidewall, the bottom portion, the coupling member and the light guide plate. The insertion direction of the coupling member is substantially perpendicular to the bottom portion of the container.
Abstract:
An organic light-emitting diode (OLED) display device includes a display panel having an OLED element, a receiving container to receive the display panel, a driving circuit part that is disposed under the receiving container and drives the display panel, and a heat insulating member that is disposed between the display panel and the receiving container, and comprises a porous polymer. Deterioration of the light-emitting layer may be prevented and/or reduced to increase durability of the OLED display device.
Abstract:
Embodiments of the present invention relate to a touch panel device. A touch panel device according to an exemplary embodiment of the present invention includes a touch panel and a touch panel controller for controlling the touch panel, wherein the touch panel includes a lower electrode layer, a solid insulating layer disposed on the lower electrode layer, a fluent insulating layer disposed on the solid insulating layer, and an upper electrode layer disposed on the fluent insulating layer.
Abstract:
A liquid crystal display includes a first substrate and a second substrate facing each other, a pixel electrode disposed on the first substrate and including a first sub-pixel electrode and a second sub-pixel electrode spaced apart from the first sub-pixel electrode by a gap, a common electrode disposed on the second substrate, a shielding member disposed on the first substrate or the second substrate and overlapping the gap between the first sub-pixel electrode and the second sub-pixel electrode, an alignment layer disposed on at least one of the pixel electrode and the common electrode, and a liquid crystal layer disposed between the first substrate and the second substrate.
Abstract:
A backlight assembly includes a light source, a light-guide plate and an integrally formed frame. The light-guide plate guides light generated from the light source. The integrally formed frame includes a chassis and a mold frame integrally combined with the chassis as an indivisible unitary element through insert/outsert injection. The integrally formed frame receives the light source and the light-guide plate. A hemming part is formed on a sidewall of the chassis to increase strength of the integrally formed frame. Therefore, the number of elements is decreased, and strength against bending stress, impact resistance and heat dissipation are improved.
Abstract:
A backlight assembly includes at least one U-shaped lamp, a first connecting member, and a second connecting member. The U-shaped lamp includes a U-shaped lamp tube, a first external electrode covering a first end portion of the U-shaped lamp tube, and a second external electrode covering a second end portion of the U-shaped lamp tube. The U-shaped lamp tube generates light when a first driving voltage is applied to the first external electrode and a second driving voltage is applied to the second external electrode. The first connecting member is electrically connected to the first external electrode for applying the first driving voltage to the first external electrode. The second connecting member is electrically connected to the second external electrode for applying the second driving voltage to the second external electrode. Therefore, interference between a wire for applying power to the U-shaped lamp and the U-shaped lamp is reduced.