摘要:
An computer vision method and system for recognizing and tracking occupants in a fixed space under variable illumination. The system utilizes a camera to capture an initial image of the unoccupied fixed space and subsequently captures images of the occupied fixed space. The edge maps of the current estimate of the unoccupied fixed space including illumination variations and the occupied fixed space are computed. The edge map of the current estimate of the unoccupied fixed space is then subtracted from the edge map of the occupied fixed space to yield a residual edge map, which is then processed to extract the image of the occupant. At least one equivalent rectangle is then computed from the two-dimensional moments of the image of the occupant. The equivalent rectangles are then used to determine the occupant type and position and to track changes in real-time. This method and system is generally designed for use with automobile safety systems such as “smart” airbags. However, it may be tailored to many applications such as computer gaming, adaptive automotive controls, and “smart” homes, among others.
摘要:
An optical sensor system for measuring the approximate three-dimensional profile and position of an object. A reduced to practice embodiment of the optical sensor system has been used to measure the three-dimensional profile and position of an object within a range of 40 inches to 2 inches with high accuracy and high update rates (>1 KHz). The sensor system generates a set of optical beams using a projection lens and multiple light emitting diodes (LED) located in a back focal plane of the projection lens. The position of each LED determines the angle of a beam transmitted thereby. By turning on each LED sequentially in time, a set of beams is generated at various angles that illuminates the object to produce a set of spots on the object. The range from each LED to each of the spatially-separated illuminated spots on the object is determined by imaging the spots onto a two-dimensional transverse-effect photodiode. Signals derived from a pair of photocurrent outputs from the photodiode are processed to determine the positions of the spots on the two-dimensional transverse-effect photodiode. Computations are performed that implement optical triangulation to determine the range and approximate three-dimensional profile to the object.
摘要:
An accurate, flexible and scalable technique for multi-modal image registration is described, a technique that does not need to rely on direct feature matching and does not need to rely on precise geometric models. The methods and/or systems described in this disclosure enable the registration (fusion) of multi-modal images of a scene with a three dimensional (3D) representation of the same scene using, among other information, viewpoint data from a sensor that generated a target image, as well as 3D-GeoArcs. The registration techniques of the present disclosure may be comprised of three main steps, as shown in FIG. 1. The first main step includes forming a 3D reference model of a scene. The second main step includes estimating the 3D geospatial viewpoint of a sensor that generated a target image using 3D-GeoArcs. The third main step includes projecting the target image's data into a composite 3D scene representation.
摘要:
Described is a signal processing system. The system comprises a signal processing module having signal processing parameters and being configured to receive a plurality of signals. The signal processing module uses the signal processing parameters to output a processed signal, as either a fused signal or a plurality of separate signals. A classification module is included to recognize information encoded in the processed signal to classify the information encoded in the process signal, with the classification having a confidence level. An optimization module is configured, in a feedback loop, to utilize the information encoded in the processed signal to adjust the signal processing parameters to optimize the confidence level of the classification, thereby optimizing an output of the signal processing module.
摘要:
A vision-based system for automatically detecting the type of object within a specified area, such as the type of occupant within a vehicle is presented. The type of occupant can then be used to determine whether an airbag deployment system should be enabled or not. The system extracts different features, including wavelet features and/or a disparity map from images captured by image sensors. These features are then processed by classification algorithms to produce class confidences for various occupant types. The occupant class confidences are fused and processed to determine occupant type. In a preferred embodiment, image features from image edges, wavelet features, and disparity are used. Various classification algorithms may be implemented to classify the object. Use of the disparity map and/or wavelet features provides greater computational efficiency.
摘要:
Described is a signal processing system. The system comprises a signal processing module having signal processing parameters and being configured to receive a plurality of signals. The signal processing module uses the signal processing parameters to output a processed signal, as either a fused signal or a plurality of separate signals. A classification module is included to recognize information encoded in the processed signal to classify the information encoded in the process signal, with the classification having a confidence level. An optimization module is configured, in a feedback loop, to utilize the information encoded in the processed signal to adjust the signal processing parameters to optimize the confidence level of the classification, thereby optimizing an output of the signal processing module.
摘要:
An object recognition system is described that incorporates swarming classifiers. The swarming classifiers comprise a plurality of software agents configured to operate as a cooperative swarm to classify an object group in a domain. Each node N represents an object in the group having K object attributes. Each agent is assigned an initial velocity vector to explore a KN-dimensional solution space for solutions matching the agent's graph. Further, each agent is configured to search the solution space for an optimum solution. The agents keep track of their coordinates in the KN-dimensional solution space that are associated with an observed best solution (pbest) and a global best solution (gbest). The gbest is used to store the best solution among all agents which corresponds to a best graph among all agents. Each velocity vector thereafter changes towards pbest and gbest, allowing the cooperative swarm to classify of the object group.
摘要:
A method of separating mixed wireless signals is provided. The method includes receiving, at an antenna comprising a first quantity of antenna elements, mixed signals comprising a mixture of source signals communicated from a second quantity of wireless signal sources, and separating the mixed signals to estimate the source signals. The second quantity is greater than the first quantity, and the source signals communicated from at least one of the wireless signal sources are received at the antenna as complex signals.
摘要:
An adaptive antenna beamformer is presented, said beamformer including a first signal source 100 and a second signal source 102 and an ambient noise or other interfering signals source 106, which are exposed to an antenna array 104. The mixed signals 108 are provided to a blind source separation processor 110. The blind separation processor 110, in this case an Independent Component Analysis element, is comprised of a group of processes that are configured to separate mixtures of signals blindly. The blind separation processor 110, provides three outputs, a first signal output 112, a second signal output 114, and a third signal output 116. The signal outputs each correspond to their respective signal input.
摘要:
An method and apparatus for extracting an interpretable, meaningful, and concise rule set from neural networks is presented. The method involves adjustment of gain parameter, &lgr; and the threshold, Tj for the sigmoid activation function of the interactive-or operator used in the extraction/development of a rule set from an artificial neural network. A multi-stage procedure involving coarse and fine adjustment is used in order to constrain the range of the antecedents of the extracted rules to the range of values of the inputs to the artificial neural network. Furthermore, the consequents of the extracted rules are provided based on degree of membership such that they are easily understandable by human beings. The method disclosed may be applied to any pattern recognition task, and is particularly useful in applications such as vehicle occupant sensing and recognition, object recognition, gesture recognition, and facial pattern recognition, among others.