Abstract:
Embodiments of the present disclosure provide a method and apparatus for the transmission of uplink control information, wherein this method comprises: receiving downlink information and using a predefined physical uplink shared channel (PUSCH) format to transmit a hybrid automatic repeat request-acknowledgment (HARQ-ACK) corresponding to the downlink information. The implementation of the present invention solves the problem in prior art of not being able to transmit HARQ-ACK on the PUSCH through its ability to transmit HARQ-ACK on the PUSCH.
Abstract:
The embodiments of disclosure disclose a method and device for processing information. The method includes that: according to a predefined rule, subframes of a first serving cell are divided into multiple subframe groups; a management mode is configured for each of the subframe groups; and according to the management mode configured for each of the subframe groups, information on the first serving cell is processed. By means of the embodiments of the disclosure, a problem that some downlink subframes in a serving cell cannot be scheduled is solved, and different requirements of all subframes can be met, thereby improving a performance of a system, and ensuring an efficiency of data transmission.
Abstract:
Provided are a data sending method and device in spectrum aggregation. When downlink aggregation is performed on the plurality of cells of different types, the method includes that: HARQ information of the plurality of cells is centralized and sent on uplink subframes corresponding to a TDD cell among the plurality of cells, wherein the TDD cell is a primary cell while other cells are secondary cells and it is given that an uplink-downlink configuration of the primary cell is configuration X, where X∈{0, 1,2,3,4,5,6}, downlink subframes are configured on each FDD cell for a UE so that a network can send a PDCCH/a PDSCH for the UE only on the configured downlink subframes while the UE detects and receives the PDCCH/PDSCH on the configured downlink subframes.
Abstract:
Disclosed are a method and device for response information transmission, a terminal, a base station and a storage medium. The method for response information transmission includes: when a time division duplex serving cell and a frequency division duplex serving cell are performing carrier aggregation and are configured to employ a physical uplink control channel (PUCCH) format 1b with channel selection mode for transmission of hybrid automatic repeat request-acknowledgement (HARQ-ACK) response information, determining HARQ-ACK response information transmitted on an uplink subframe by a first serving cell and a second serving cell, and transmitting the determined HARQ-ACK response information via a PUCCH or a physical uplink shared channel (PUSCH).
Abstract:
Provided are a data sending method and device in spectrum aggregation. When downlink aggregation is performed on the plurality of cells of different types, the method includes that: HARQ information of the plurality of cells is centralized and sent on uplink subframes corresponding to a TDD cell among the plurality of cells, wherein the TDD cell is a primary cell while other cells are secondary cells and it is given that an uplink-downlink configuration of the primary cell is configuration X, where Xε{0,1,2,3,4,5,6}, downlink subframes are configured on each FDD cell for a UE so that a network can send a PDCCH/a PDSCH for the UE only on the configured downlink subframes while the UE detects and receives the PDCCH/PDSCH on the configured downlink subframes.
Abstract:
Provided are a configuration method and apparatus, a receiving method and apparatus, a device, and a storage medium. The configuration method includes: determining a modulation and coding scheme (MCS) set based on a higher-layer configuration parameter; and configuring an MCS of data based on the MCS set; where the higher-layer configuration parameter indicates whether data transmission supports a 16 quadrature amplitude modulation (16QAM) modulation scheme, and the MCS set includes one or more of: a first MCS set and a second MCS set.
Abstract:
Provided are a signal transmission method, apparatus, and device, and a storage medium. The method includes generating a second narrowband positioning reference signal sequence according to a system frame number (SFN); obtaining a second narrowband positioning reference signal according to the second narrowband positioning reference signal sequence; and transmitting a first narrowband positioning reference signal on a first radio frame set, and transmitting the second narrowband positioning reference signal on a second radio frame set.
Abstract:
Provided are an information indication method and apparatus, a terminal, a base station and a storage medium. The information indication method includes described below, first information is sent to a terminal, where the first information includes a re-synchronization signal (RSS) configuration indication, the RSS configuration indication is used for indicating whether RSS configuration information of a neighboring cell is the same as RSS configuration information of a serving cell, so that the terminal acquires the RSS configuration information of the neighboring cell according to the RSS configuration information of the serving cell in a case where the RSS configuration information of the neighboring cell is the same as the RSS configuration information of the serving cell.
Abstract:
Provided are wake-up signal sending and receiving methods and apparatuses and storage media. The wake-up signal sending method includes sending a WUS by using at least one of a first sending manner: sending a first WUS in a first basic unit and sending a second WUS in a second basic unit; a second sending manner: determining, according to a preset condition, whether a third WUS or a fourth WUS is sent in a basic unit; a third sending manner: determining, according to first signaling, whether the fourth WUS is sent in the basic unit or one of the third WUS or the fourth WUS is sent in the basic unit; or a fourth sending manner: determining, according to second signaling and a basic unit index, a fifth WUS sent in the basic unit.
Abstract:
A method for providing scheduling request resources to a user equipment involves a wireless network node (e.g., an eNB) transmitting a configuration of scheduling request resources to the user equipment via radio resource control signaling, and the wireless network node enabling the scheduling request resources by transmitting a message to the user equipment via physical layer signaling. The message that enables the scheduling request resources may be transmitted as part of an uplink grant or downlink grant. In some implementations, the enabling message maps to one of several sets of scheduling request resources, which the wireless network node has previously communicated to the user equipment via radio resource control signaling. In other implementations, the selection of which set of scheduling request resources is to be enabling is made by the user equipment based on implicit signaling from the wireless node.