Abstract:
Automatic checking of the calibration of a vehicle wheel balancer includes putting the balancer in a calibration check mode, mounting a test weight of known mass to a hub of the balancer, spinning the hub with the said test weight mounted thereon to determine the imbalance of the rotating hub/test weight assembly, comparing the determined imbalance with an expected imbalance and determining the difference therebetween. The balancer displays a message indicative of the status of the balancer's calibration. The balancer calibration check may be optionally overridden.
Abstract:
A sideslip tester detects sideslip and scrub in a vehicle having a steering axle and one or more pairs of tandem axles. The sideslip tester has a runway having a measurement plate which is moved laterally with respect to its longitudinal axis as a tire of the vehicle passes over the measurement plate as a result of lateral forces acting upon the tire. A lateral movement sensor operatively connected to the measurement plate determines the amount of lateral movement of the measurement plate as the vehicle tire passes over the plate and provides an output corresponding to the amount of lateral movement measured. The sideslip tester can determine when it is presented with tandem axles. When it is presented with tandem axles, the sideslip tester will determine the scrub angle of the tandem axles to determine if they are parallel.
Abstract:
Wheel balancer design informs the user to apply correction weight(s) on one or two planes of the wheel tire assembly. A comprehensive combination of a "split weight" key and display usage allows the user to split a singular weight into a variety of choices involving two (or more) weights. The two weights are applied at the proper angular displacements so as to provide perfect imbalance correction using standard size incremental weights.
Abstract:
A wobble run-out compensation system includes a compensation plate mountable with respect to a vehicle wheel. First and second manually operable adjusting members allow for independently adjusting the orientation of the compensation plate in first and second orthogonal planes, an adjustment in one plane not affecting the orientation of the plate in the other plane. The orientation of the compensation plate in each of the first and second planes is electronically sensed and substantially continuously displayed on an electronic display as that orientation is being adjusted so that the user is able to observe changes on the electronic display in the orientation of the compensation plate as manual adjustments are made.
Abstract:
A vehicle wheel turning angle gauge having a base to support a wheel engaging turnable plate which supports an optical encoder device mounted in non-rotary position so an operating shaft can engage and turn with the turnable plate to generate signals of the degree of turn and the direction of that turn. The base provides a structure for limiting the maximum displacement of the turnable plate without restricting its direction of motion so it will accommodate the range of vehicle wheel movement as required for alignment purposes.
Abstract:
Apparatus for guiding the alignment adjustment on vehicle wheels in which a computer is used to receive vehicle alignment specifications and tolerances data for a known vehicle, and to receive actual alignment information from that known vehicle, these two sources of alignment data being conditioned such that on recall it can be displayed in visual format or through a system of light bars which are driven by the computer to display only differences between the known vehicle specifications and tolerance data and the actual alignment data. The display of alignment data and actual data is made available on a CRT screen, as well as being transmitted to a portable display for movement about a vehicle during alignment adjustment.
Abstract:
A support structure having a vertical element supporting a set of cameras associated with a vehicle measurement or inspection system together with at least one target structure required for realignment or recalibration of onboard vehicle safety system sensors. A camera crossbeam carried by the support structure locates the set of cameras as required to view a vehicle undergoing measurement or inspection. The target structure is affixed to the vertical element of the support structure, at an elevation suitable for observation by at least one vehicle onboard sensors during a realignment or recalibration procedure. A set of rollers facilitates positioning of the target structure on a supporting floor surface during a realignment or recalibration procedure.
Abstract:
A vehicle ADAS target or fixture is configured with an Inertial Measurement Unit (IMU) consisting of a combination of accelerometers and gyroscopes capable of estimating a relative position and orientation within the spatial volume of the vehicle service area by tracking changes in acceleration and rotation. A controller monitors movement of the IMU relative to an established reference location, generating output utilized by a vehicle service system to guide a technician to position and orient the vehicle ADAS target or fixture at a selected location within the vehicle service area required to conduct a vehicle ADAS service procedure.
Abstract:
A system and method for vehicle technician communication utilizing a local vehicle service system operatively coupled to a remote vehicle service system via a network connection. The system enables bi-directional communication between the local service technician and a service specialist associated with the remote vehicle service system by configuring the local vehicle service system with software instructions and hardware to provide a communication interface, such as a software app, graphical user interface, or teleconference functionality. Using the communication interface, the service specialist can: (1) guide the local technician through the initial process of establishing a connection between the vehicle undergoing service or inspection and the remote vehicle service system; (2) direct necessary actions during a diagnostic analysis of the vehicle, such as turning on the vehicle's engine, turning a steering wheel, etc.; and (3) convey results of the vehicle diagnostic analysis in verbal, written, or visual form.