Abstract:
An integrated circuit includes a pool of processors and a Tripwire Data Merging and Collision Detection Circuit (TDMCDC). Each processor has a special tripwire bus port. Execution of a novel tripwire instruction causes the processor to output a tripwire value onto its tripwire bus port. Each respective tripwire bus port is coupled to a corresponding respective one of a plurality of tripwire bus inputs of the TDMCDC. The TDMCDC receives tripwire values from the processors and communicates them onto a consolidated tripwire bus. From the consolidated bus the values are communicated out of the integrated circuit and to a debug station. If more than one processor outputs a valid tripwire value at a given time, then the TDMCDC asserts a collision bit signal that is communicated along with the tripwire value. Receiving tripwire values onto the debug station facilitates use of the debug station in monitoring and debugging processor code.
Abstract:
A circuit that receives queue number that indicates a queue stored within a memory unit and a packet descriptor that includes a drop precedence value, and in response determines an instantaneous queue depth of the queue. The instantaneous queue depth and drop precedence value are used to determine a drop probability. The drop probability is used to randomly determine if the packet descriptor should be stored in the queue. When a packet descriptor is not stored in a queue the packet associated with the packet descriptor is dropped. The queue has a first queue depth range. A first drop probability is used when the queue depth is within the first queue depth range and the drop precedence is equal to the first value. A second drop probability is used when the queue depth is within the first queue depth range and the drop precedence equal to a second value.
Abstract:
A network appliance includes a first processor, a second processor, a first storage device, and a second storage device. A first status information is stored in the first storage device. The first processor is coupled to the first storage device. A queue of data is stored in the second storage device. The first status information indicates if traffic data stored in the queue of data is permitted to be transmitted. The second processor is coupled to the second storage device. The first processor communicates with the second processor. The traffic data includes packet information. The first storage device is a high speed memory only accessible to the first processor. The second storage device is a high capacity memory accessible to multiple processors. The first status information is a permitted bit that indicates if the traffic data within the queue of data is permitted to be transmitted.
Abstract:
A transactional memory (TM) includes a control circuit pipeline and an associated memory unit. The memory unit stores a plurality of rings. The pipeline maintains, for each ring, a head pointer and a tail pointer. A ring operation stage of the pipeline maintains the pointers as values are put onto and are taken off the rings. A put command causes the TM to put a value into a ring, provided the ring is not full. A get command causes the TM to take a value off a ring, provided the ring is not empty. A put with low priority command causes the TM to put a value into a ring, provided the ring has at least a predetermined amount of free buffer space. A get from a set of rings command causes the TM to get a value from the highest priority non-empty ring (of a specified set of rings).
Abstract:
A transactional memory (TM) includes a selectable bank of hardware algorithm prework engines, a selectable bank of hardware lookup engines, and a memory unit. The memory unit stores result values (RVs), instructions, and lookup data operands. The transactional memory receives a lookup command across a bus from one of a plurality of processors. The lookup command includes a source identification value, data, a table number value, and a table set value. In response to the lookup command, the transactional memory selects one hardware algorithm prework engine and one hardware lookup engine to perform the lookup operation. The selected hardware algorithm prework engine modifies data included in the lookup command. The selected hardware lookup engine performs a lookup operation using the modified data and lookup operands provided by the memory unit. In response to performing the lookup operation, the transactional memory returns a result value and optionally an instruction.
Abstract:
A Network Flow Processor (NFP) integrated circuit receives, via each of a first plurality of physical MAC ports, one or more PCP (Priority Code Point) flows. The NFP also maintains, for each of a second plurality of virtual channels, a linked list of buffers. There is one port enqueue engine for each physical MAC port. For each PCP flow received via the physical MAC port associated with a port enqueue engine, the port enqueue engine causes frame data of the flow to be loaded into one particular linked list of buffers. Each port enqueue engine has a lookup table circuit that is configurable to cause multiple PCP flows to be merged so that the frame data for the multiple flows is all assigned to the same one virtual channel. Due to the PCP flow merging, the second number can be smaller than the first number multiplied by eight.
Abstract:
A pipelined run-to-completion processor executes a pop stack absolute instruction. The instruction includes an opcode, an absolute pointer value, a flag don't touch bit, and predicate bits. If a condition indicated by the predicate bits is not true, then the opcode operation is not performed. If the condition is true, then the stack of the processor is popped thereby generating an operand A. The absolute pointer value is used to identify a particular register of the stack, and the content of that particular register is an operand B. The arithmetic logic operation specified by the opcode is performed using operand A and operand B thereby generating a result, and the content of the particular register is replaced with the result. If the flag don't touch bit is set to a particular value, then the flag bits (carry flag and zero flag) are not affected by execution of the instruction.
Abstract:
Circuitry to provide in-order packet delivery. A packet descriptor including a sequence number is received. It is determined in which of three ranges the sequence number resides. Depending, at least in part, on the range in which the sequence number resides it is determined if the packet descriptor is to be communicated to a scheduler which causes an associated packet to be transmitted. If the sequence number resides in a first “flush” range, all associated packet descriptors are output. If the sequence number resides in a second “send” range, only the received packet descriptor is output. If the sequence number resides in a third “store and reorder” range and the sequence number is the next in-order sequence number the packet descriptor is output; if the sequence number is not the next in-order sequence number the packet descriptor is stored in a buffer and a corresponding valid bit is set.
Abstract:
A Network Interface Device (NID) of a web hosting server implements multiple virtual NIDs. For each virtual NID there is a block in a memory of a transactional memory on the NID. This block stores configuration information that configures the corresponding virtual NID. The NID also has a single managing processor that monitors configuration of the plurality of virtual NIDs. If there is a write into the memory space where the configuration information for the virtual NIDs is stored, then the transactional memory detects this write and in response sends an alert to the managing processor. The size and location of the memory space in the memory for which write alerts are to be generated is programmable. The content and destination of the alert is also programmable.
Abstract:
An entropy storage ring includes an input node, a plurality of serial-connected stages, and an output node. Each stage includes an XOR (or XNOR) circuit, a delay element having an input coupled to the XOR output, and a combinatorial circuit having an output coupled to a second input of the XOR. The combinatorial circuit may be a NAND, NOR, AND or OR gate. A first input of the XOR is the data input of the stage. The output of the delay element is the data output of the stage. A first input of the combinatorial circuit is coupled to receive an enable bit from a configuration register. A second input of the combinatorial circuit is coupled to the ring output node. In operation, a bit stream is supplied onto the ring input node. Feedback of multiple stages are enabled so that the bit stream undergoes complex permutation as it circulates.