Abstract:
A round baler has an overshot secondary rotor located behind an undershot precutter rotor. The round baler has a relatively wide swath crop pick-up and a baling chamber with a significantly more narrow inlet. The precutter rotor has a central region supporting a plurality of rotatable crop conveying members interleaved by both a set of relatively fixed cutting blades and a set of relatively fixed strippers for urging cut crop away from the rotor, and end regions supporting rotatable helically disposed bands for receiving wide swath crop from the pick-up arrangement and urging the received crop toward the central region. The secondary rotor creates an S-shaped or serpentine crop path with minimal dead space and is a positive feeder for bale starting. Stationary strippers for the secondary rotor prevent crop from exiting the baler behind the secondary rotor.
Abstract:
A press is provided with a feed channel, whose feed channel wall, in the event of overload, can be pivoted away from a feed rotor. The pivotal motion of the feed channel wall is realized about an upstream bearing, which, by means of a link, is itself moved away from the feed rotor in an upright guide. The motion within the guide is derived from the pivot motion of the feed channel wall away from the feed rotor. A hydraulic cylinder, working against a spring defined by an accumulator, is coupled to a downstream end of the channel wall and resists movement of the channel wall away from the feed rotor, but yields under a preselected crop load.
Abstract:
A cutting device is adapted for cooperating with a tined rotor that receives crop delivered by a pick-up. A selector mechanism is provided for selecting the number of effective knives for reducing the crop conveyed across the knife bed. This selector includes a selector rotor rotatably mounted to a pivoted lever arrangement which may be raised to a non-use position when all of the knives are to be used for crop reduction. The selector rotor includes four rows of different arrangements of selector tabs spaced equally about the axis of the rotor. Lowering the lever places the rotor in a working location where a selected one of the four different rows of selector tabs is positioned for blocking a desired number of safety trip devices, which are associated one each with each cutter knife, in a retracted position where it is prevented from interacting with its associated knife, whereby the knife remains in a non-working position.
Abstract:
A rotor for a bagging machine used to force feed material, e.g., silage, for compaction in a tunnel of the machine prior to insertion of the material into a large storage bag. The rotor includes teeth sets closely spaced along the length of the rotor and each teeth set including at least three circumferentially spaced teeth. Preferably the teeth of each teeth set are intregal with a support or base ring that slidably fits en elongate pipe or tube and position axially in circumferentially as desired and then weld tacked to the pipe.
Abstract:
A reverser which, in a preferred embodiment, has a hydraulic cylinder supported by a chopper baler frame. The opposite end of the hydraulic cylinder is attached to the reverser driver. When activated by hydraulics on a tractor, the hydraulics will extend the cylinder, causing the sprockets to be disengaged. Further extension of the cylinder will cause the reverser driver to engage the reverser sprocket and turn the rotor backwards slightly. After full extension, the cylinder will then be retracted. This process can be repeated a couple of times in order to remove the blockage. The reverser enables the operator to restore the baler to its working condition from the tractor seat. Being able to disengage the rotor from the rest of the machine enables the bale to be wrapped if a major blockage occurs. Also a controlled reversing motion is beneficial, so over-reversing does not occur.
Abstract:
An agriculture baler having a bale-forming mechanism; a pick-up assembly disposed forward of the bale-forming mechanism to pick up a cut crop material and convey the crop material towards the bale mechanism, the pick-up assembly having: (a) a pick-up apparatus; (b) a conveying rotor disposed to receive cut crop material from the pick-up apparatus and to move the cut crop material towards the bale forming mechanism; (c) a floor having a first slot formed therein; (d) a cutting mechanism including a first knife disposed to rotate from a first resting position to a second cutting position extending through the first slot in the floor; and (e) a first guide plate disposed adjacent to the first slot.
Abstract:
An overshot rotary conveyor includes a plurality of sets of flat tines welded to a cylindrical shaft at respective locations spaced across the shaft, each tine including a curved leading edge. Located on the opposite sides of each flat tine and having forward ends received about the cylindrical shaft is a stripper including upper and lower halves. The lower half is shaped to provide a clearance zone below flat planar sides of the upper half, and to provide a stripper edge at each side which is at the front of the clearance zone and acts to push crop carried over by the adjacent tine into the clearance zone where the crop drops away. Located ahead of the stripper edges at the opposite sides of the lower stripper half in the vicinity of the cylindrical shaft is a notch having the purpose engaging, and deflecting away from the conveyor shaft, any crop that may be carried past the stripper edge by the conveyor tine.
Abstract:
A shredding and baling apparatus provided includes a shredding assembly operatively connected to a baling assembly via a conveyor. A rotatable drum with cutting teeth spirally arranged along the drum is preferably centered within a lower portion of an intake hopper for cutting through material as it is fed into the hopper. Fixed cutting teeth are preferably arranged in a row or rows along each of the longitudinal sidewalls of the hopper, adjacent the cutting drum. A touch screen display and computer may be used in combination with sensors to monitor and control the shredding and baling operation, and a hydraulic system is used to drive the components. The shredding and baling assembly is preferably designed in an industrial size to handle high volumes of material and may be driven or transported from one location to another.