Abstract:
A pleating apparatus comprises a support surface, first and second pleating surfaces, and a driver for compressing a portion of a filter material between the first and second pleating surfaces to form a pleat, where at least one of the pleating surfaces is curved or extends at an acute angle with respect to a support surface.
Abstract:
Fluid treatment elements substantially inhibit electrical charge imbalances and/or build-ups of electrical charges. A fluid treatment element may comprise a multilayer composite including an electrically conductive fibrous matrix, having an upstream side and a downstream side, disposed on a porous substrate, also having an upstream side and a downstream side, which supports the fibrous matrix. The fibrous matrix may include a combination of conductive and nonconductive fibers, wherein the conductive fibers include metal fibers and substantially inhibit an electrical charge and/or build-up of electrical charge. The conductive metal fibers of the electrically conductive fibrous matrix may comprise less than about 50% by weight of the conductive and nonconductive fibers and may have diameters in the range from about 1 μm or less to about 10 μm. The multilayer composite may also include a drainage layer positioned along one of the upstream side of the fibrous matrix and the downstream side of the porous substrate.
Abstract:
A fluid filtering apparatus and method may include keyed components to ensure that a correct filter element is being installed into a filter base, and to automatically actuate a fluid valve as the filter element is rotated into place on the base. Tool-less replacement of the element is provided. An embodiment of the element may include inner and outer substantially tubular-shaped media packs disposed about an axis, with one end of each of the inner and outer media packs being attached to an end cap of the element in a manner defining a fluid flow space between the inner and outer media packs for receiving a flow of fluid directed in parallel through the inner and outer media packs. A housing of the filter apparatus may include a flow tube configured to fit into the space between the inner and outer media packs.
Abstract:
A pleated filter element includes a composite depth filter medium formed into a plurality of pleats. The composite depth filter medium includes a plurality of depth filter media layers. Each of the plurality of depth filter media layers includes adsorber particulate matter. Each of the plurality of depth filter media layers may have a thickness less than about 1300 microns. The plurality of depth filter media layers may have at least 50% by weight of adsorber particulate matter.
Abstract:
A filter cartridge which comprises a filter pack (3) formed by a flat filtering medium, a tubular sheath (2) with a perforated wall, surrounding the filtering pack, and two respective end caps (5) having a first disc (16) and a second disc (17) placed one on top of the other, each made from thermoplastic, with a portion of the filtering pack (3) situated along one of its edges and a portion of the sheath (2) situated along one of its edges (33) which are embedded in the second disc (17), with the first disc (16) having a peripheral rim (19) which surrounds the relevant portion of the sheath (2) and with the sheath having a shoulder (34) opposite the edge of the rim (19) of the first disc (16).
Abstract:
A pleating method comprises disposing a filter material on a support surface and compressing a portion of the filter material between first and second pleating surfaces to form a pleat, where at least one of the pleating surfaces is curved or extends at an acute angle with respect to a support surface.
Abstract:
A filter element includes a hollow filter pack, a core disposed in the filter pack, and an end cap. The core has a wall structure and a recess. The end cap is bonded to the filter, and solidified bonding material produced during bonding of the end cap to the filter pack is contained in the recess of the core. The wall structure of the core supports the periphery of the filter pack at the bond.
Abstract:
A filter element is disclosed that includes a filtration media, an upstream pleat support and a multi-layer downstream pleat support. The multi-layer downstream support includes a first downstream support layer and a second downstream support layer. The first downstream support layer is in contact with the filtration media and is interposed between the filtration media and the second downstream layer. The first downstream support layer is fabricated so as to minimize points of surface contact with the filtration media, thereby enhancing fluid flow away from the filtration media. The second downstream support layer is in contact with the first downstream support layer and is fabricated so as to facilitate lateral fluid flow relative to the multi-layer downstream pleat support. The disclosed filter element may be utilized in filter cartridges of various designs to provide enhanced filtration performance, e.g., by way of increased media area and improved flow/throughput.
Abstract:
A multi-micron, multi-zoned woven metal wire mesh for the production of sand control screens. The multi-zone, dual micron layer is spirally wound on top of a perforated metal pipe. Second and third metal mesh filtration layers are spirally wound on top of the three-zone, dual micron layer, respectively. A perforated metal shroud is placed on top of the entire assembly to protect from the surrounding environment and acts as a protective cover.
Abstract:
A filter is disclosed that includes a cylindrical filter element having a longitudinal axis, an outer periphery, an inner periphery, and a plurality of longitudinal pleats arranged in a spiral configuration in close proximity to one another. Each of the pleats has a pair of legs, and the legs of each pleat are joined to one another at a root. The roots of adjacent pleats are radially spaced from one another about the inner periphery of the filter element.