Abstract:
A pumping system configured to pump fluid from the ambient environment to a target reservoir, the pumping system including: a fluid pump configured to statically mount to a rotating surface, the pump configured to rotate about an axis of rotation; a pump reservoir statically coupled to the fluid pump and configured to fluidly couple to the target reservoir, the pump reservoir including a collection area defined along a portion of the pump reservoir radially outward of the axis of rotation; and a liquid separation member arranged along a portion of the collection area, the liquid separation member including a membrane configured to preferentially permit liquid flow therethrough.
Abstract:
A pump system including a drive mechanism that provides a pumping force, a primary pump including a first pump cavity, an actuating element in reciprocal relation with the first pump cavity, and an outlet fluidly connected to a reservoir, a force translator that facilitates pump force transfer from the drive mechanism to the actuating element, a pressure regulation mechanism including a reciprocating pump that includes a pump chamber including an inlet manifold fluidly connected to the reservoir, a valve located within the inlet manifold, and a reciprocating element in reciprocal relation with the pump chamber. The pressure regulation mechanism preferably passively ceases force transfer from the drive mechanism to the primary pump based on the pressure of the reservoir.
Abstract:
An energy extraction system for a rotational surface including a drive mechanism having a rotational axis and configured to rotatably couple to the rotational surface and an energy extraction mechanism coupled to the drive mechanism. The drive mechanism includes a cam rotatable about the rotational axis and an eccentric mass coupled to the cam that offsets a center of mass of the drive mechanism from the rotational axis, the eccentric mass cooperatively formed by a first and a second section, the eccentric mass operable between a connected mode wherein the first and second sections are adjacent and a disconnected mode wherein the first and second sections are separated. The energy extraction mechanism is connected to the cam and is statically coupled to the rotating surface, wherein the energy extraction mechanism configured to extract energy from relative rotation between the energy extraction mechanism and the cam.
Abstract:
A wheel assembly includes a magneto-rheological elastomer (MRE) assembly disposed between a rim and a tire assembly. The MRE assembly may be configured to adjust a tire pressure within a chamber between the rim and the tire assembly when a magnetic field is applied to the MRE assembly.
Abstract:
A wheel assembly includes a magneto-rheological elastomer (MRE) assembly disposed between a rim and a tire assembly. The MRE assembly may be configured to adjust a tire pressure within a chamber between the rim and the tire assembly when a magnetic field is applied to the MRE assembly.
Abstract:
A device for automatic tire inflation and tire pressure display has a tire pressure measurement unit, a tire temperature sensor (a thermometer) and a gradienter for measuring the tire balance. The tire pressure measurement unit has a tire pressure measurement unit, a voltage regulating circuit of power source, a microprocessor control unit, a wireless transceiving module and an inflation/deflation control component. The tire pressure measurement unit measures the tire pressure value of a tested tire. The tire pressure value is then wirelessly displayed on a display unit in a vehicle so that the user can know the present status of a tire. The user can also maneuver a function key to select an operation according to the displayed data and send this message to the tire room to execute inflation or deflation of the tire.
Abstract:
This invention relates to a method and apparatus for maintaining equal air pressure in a pair of tires on a work machine. The invention provides a valve body with a pair of piston chambers. A piston is reciprocatably positioned within each piston chamber, the pistons are biased toward a first closed end of the piston chambers. The closed end of each piston chamber is connected by a passageway to one of the tires. Each piston chamber is additionally fluidly connected to the other piston chamber. When the air pressure in each tire is above a predetermined amount the pistons are moved away from the closed end of the piston chamber and airflow is permitted between the piston chambers thereby balancing the tire pressures. If the pressure in either tire is below the predetermined minimum, the piston in that respective piston chamber moves toward the first end to block, airflow between the piston chambers.
Abstract:
A tire filter assembly (15, 400) for a central tire inflation system (10) having fluid communication (403) from the exterior to the interior of the pressurized chamber (74) of an inflatable tire (12). The assembly includes filter means (15) mounted to a cylindrical sleeve-type bead lock (400) inside the interior pressurized tire chamber (74). The location of the filter inside the tire permits it to have a relatively large area through which air can flow, and to prevent rubber particles that come off the inside of the tire from entering the central inflation system. The filter assembly is affixed by means of an adhesive (11) or a molding material to a groove (17) provided in the bead lock, and/or by mechanical means.
Abstract:
A motor vehicle with twin tires which includes one tire with a winter tread and a further tire with a summer tread arranged on a common rim. Each tire is provided with a device for the air pressure regulation for achieving a selective pressure decrease and increase. The device for the air pressure regulation is connected with a device for the air pressure control by way of a common control unit. Actuating switches influencing the control unit serve for the mutually matched pressure adjustment of the tires for the summer and winter operation.
Abstract:
The deflating device, in particular intended for rapid intervention or military vehicles, comprises a servovalve (18) having a large-section passage instantaneously putting the interior of the tire in communication with the open air, a pressure sensor (21) with an associated circuit (22,23,24) an electrovalve (17) and its associated circuit being supplied with a chopped or otherwise interrupted current through a rotating transformer (12,14), the sensor circuit being such that, when the predetermined low pressure value is reached, it causes the closure of the servovalve (18) by the electrovalve (17).