Abstract:
A micro aerial vehicle apparatus capable of flying in different flight modes is disclosed. The apparatus includes a fuselage; at least one pair of blade-wings; and an actuator for actuating the blade-wings by flapping the blade-wings in dissonance or resonance frequencies.
Abstract:
Heavier-than-air, aircraft having flapping wings, e.g., ornithopters, where angular orientation control is effected by variable differential sweep angles of deflection of the flappable wings in the course of sweep angles of travel and/or the control of variable wing membrane tension.
Abstract:
A biomimetic pitching and flapping mechanism including a support member, at least two blade joints for holding blades and operatively connected to the support member. An outer shaft member is concentric with the support member, and an inner shaft member is concentric with the outer shaft member. The mechanism allows the blades of a small-scale rotor to be actuated in the flap and pitch degrees of freedom. The pitching and the flapping are completely independent from and uncoupled to each other. As such, the rotor can independently flap, or independently pitch, or flap and pitch simultaneously with different amplitudes and/or frequencies. The mechanism can also be used in a non-rotary wing configuration, such as an ornithopter, in which case the rotational degree of freedom would be suppressed.
Abstract:
The present invention is an apparatus and method for a multimodal electromechanical insect known as an entomopter. The entomopter is a species of micro air vehicle (MAV), which is defined as a flying vehicle having no dimension greater than 15 cm. The entomopter mimics the flight characteristics of an insect by flapping wings to generate lift. The entomopter's wings are powered by a reciprocating power source. The same power source may be used to power legs to enable the entomopter to crawl along the ground. In a preferred embodiment, the power source is a compact noncombustive engine known as a reciprocating chemical muscle (RCM).
Abstract:
A system (100) for determination of flight performance of the bioinspired flapping-wing aerial vehicle (101) in simulated space conditions discloses the aerial vehicle (101) installed in a thermo-vacuum chamber (103) that maintains vacuum and temperature for aerial vehicle (101) to simulate climatic conditions in space, where the aerial vehicle (101) is evaluated by the force transducer (104) and data acquisition system (105) acquires the data from force transducer (104). The flapping motion of the wing (101b) of the aerial vehicle (101) in space conditions increases the velocity of aerial vehicle (101), where dynamic wing twisting maintains the wing (101b) at a specific angle of attack to generate lift force and wing deformation occurs during which the passive pitch angle produces high lift forces, facilitating stable flight in simulated space conditions.
Abstract:
A flapping wing driving apparatus includes at least one crank gear capstan rotatably coupled to a crank gear, the at least one crank gear capstan disposed radially offset from a center of rotation of the crank gear; a first wing capstan coupled to a first wing, the first wing capstan having a first variable-radius drive pulley portion; and a first drive linking member configured to drive the first wing capstan, the first drive linking member windably coupled between the first variable-radius drive pulley portion and one of the at least one crank gear capstan; wherein the first wing capstan is configured to non-constantly, angularly rotate responsive to a constant angular rotation of the crank gear.
Abstract:
Presented herein are an actuation system and a flapping wing micro aerial vehicle system. In one embodiment, for energy efficiency and to achieve a resonant system, the flapping wing is directly driven using conventional DC motors coupled with torsion springs. Using a transmission gear, the motor is designed to operating at an efficient speed, but generates an overall reciprocal motion to the wing. Closed loop control is applied to achieve tracking of the desired wing motion kinematics, the frequency of which is tuned to match the resonant frequency of the system. We also show that wing kinematic control can be achieved by tracking trajectories with different amplitude and bias, therefore creating flight control forces and torques.
Abstract:
The wing flapping mechanism (100) includes a main frame (110), a pair of opposite wings (120) laterally projecting from the main frame (110), and a linkage arrangement to convert rotation of a motor (150) into a three-dimensional cyclic wing motion of each of the wings (120). The linkage arrangement includes torque-transmitting couplings extending from inside the main frame (110) into the wing structures (122) to transmit an alternating pivoting motion, created as a result of the rotation of the motor (150), to the distal end of a corresponding third torsion-responsive tube (140, 144′″). Each torque-transmitting coupling extends inside a shoulder joint (130), a first torsion-responsive tube (132, 144′), an elbow joint (134), a second torsion-responsive tube (136, 144″), a wrist joint (138) and the third torsion-responsive tube (140, 144′″) of the corresponding wing structure (122).
Abstract:
A method of controlling wing position and velocity for a flapping wing air vehicle provides six-degrees-of-freedom movement for the aircraft through a split-cycle constant-period frequency modulation with wing bias method that generates time-varying upstroke and downstroke wing position commands for wing planforms to produce nonharmonic wing flapping trajectories that generate non-zero, cycle averaged wing drag and alter the location of the cycle-averaged center of pressure of the wings relative to the center of gravity of the aircraft to cause horizontal translation forces, rolling moments and pitching moments of the aircraft.
Abstract:
The invention relates to a wing for generating lift and comprises a trailing edge, a leading edge, an inner end, an outer end, a top surface and a bottom surface. The wing comprises an aerofoil with a chord line and a span direction. The leading edge comprises a kink between the inner end and the outer end. The leading edge comprises a forward sweep part between the inner end and the kink extending towards the kink presenting an angle relative to the span direction. The leading edge comprises a backward sweep part between the kink and the outer end extending from the kink presenting an angle relative to the span direction. The top surface comprises a flow control means for controlling the lift at least partly located between a leading edge part between the kink and the outer end and located between the leading edge and the trailing edge.