Abstract:
An aircraft equipped with a distributed fan propulsion system and methods of operating such aircraft are provided. In one aspect, an aircraft includes a wing having a top surface and a bottom surface. The aircraft also has a distributed propulsion system that includes a suction fan array having one or more fans mounted to the wing and a pressure fan array having one or more fans mounted to the wing. The fans of the suction fan array are each positioned primarily above the top surface of the wing and the fans of the pressure fan array are each positioned primarily below the bottom surface of the wing. The fans of the suction fan array are controllable independent of the fans of the pressure fan array so that the air pressure above and/or below the wing can be locally controlled, allowing for adjustment of lift on the wing.
Abstract:
A rotor hub fairing system for use in a counter-rotating, coaxial rotor system is provided including an upper hub fairing defined about an axis and a lower hub fairing defined about the axis. A shaft fairing is disposed between the upper hub fairing and the lower hub fairing. The geometry of the shaft fairing is configured to encourage a wake adjacent the upper hub fairing to form collectively with a wake adjacent the lower hub fairing.
Abstract:
Aerodynamic microstructures having sub-microstructure are disclosed herein. One disclosed example apparatus includes an aerodynamic microstructure defining an external surface of a vehicle, and a pattern of sub-microstructures superimposed on the microstructure to convey a representation of an image.
Abstract:
A rotor hub fairing system for use in a counter-rotating, coaxial rotary wing aircraft is provided including an upper hub fairing defined about an axis. A lower hub fairing is similarly defined about the axis. An airfoil shaped shaft fairing is disposed between the upper hub fairing and the lower hub fairing. The airfoil shaped shaft fairing has a thickness to chord (t/c) ratio in the range of about 20% and about 45%.
Abstract:
The invention regards a plasma-enhanced active laminar flow actuator system (1) adapted to an aerodynamic surface (3) which has a nano-engineered composite material layer (5) comprising a set of electrodes arranged (7′, 7″) in at least an upper (P1) and a lower (P2) plane extending parallel with the aerodynamic surface (3); the electrodes (7′, 7″) comprising nano filaments (9); the electrodes (7′) of the upper plane (P1) are arranged in the aerodynamic surface (3) such that they define a smooth and hard aerodynamic surface (3); conductors (11, 11′) of nano filaments (9″) arranged for electrical communication between a control unit (13) and each of the electrodes (7′, 7″), wherein the control unit (13) is adapted to address current between cooperating electrodes (7′, 7″) of the upper and lower plane (P1, P2) from a current supply depending upon air flow characteristic signals fed from air flow sensor means (19).
Abstract:
A helicopter and aircraft power device has a plurality of fluid inlets on a windward side of a blade housing and a plurality of fluid outlets on a leeward side in a manner that the fluid inlets communicate with the fluid outlets. The path where the fluid flows in the lengthwise direction on the windward side of the blade housing is far greater than the path where the fluid flows in the widthwise direction on the leeward side of the blade housing, generating a very large pressure difference between the leeward side and the windward side. The action of the centrifugal force and a suction force from a suction motor significantly increase the flowing speed on the windward side of the blade and in the fluid passage, generating bigger pressure difference on either sides of the propeller and thus forming more powerful lift force and driving force.
Abstract:
A system for controlling a magnitude of a sonic boom includes a first sensor configured to detect a first condition of the supersonic aircraft. The system further includes a pair of wings configured to move fore and aft. The system further includes a processor communicatively coupled with the sensor and operatively coupled with the pair of wings. The processor is configured to (1) receive a first information from the first sensor indicative of the first condition, (2) calculate a lift distribution of the supersonic aircraft based on the first information, (3) determine an existence of a deviation of the lift distribution from a desired lift distribution based on the flight condition, and (4) control the pair of wings to move to redistribute the lift in a manner that more closely conforms to the desired lift distribution. The magnitude of the sonic boom is reduced when the deviation is reduced.
Abstract:
A system and method for producing surface deformations on a surface of a body. The system and method relate to changing the convective heat transfer coefficient for a surface. The system includes a first surface being a surface of a body exposed to a fluid flow and at least one actuator affecting deformation of the first surface. The system also includes a control system providing control commands to the at least one actuator, the control commands configured to change deformations on the first surface in order to change the convective heat transfer coefficient of the first surface. Further, the system includes a sensor providing environmental characteristic information to the control system.
Abstract:
A system and method for reducing a velocity deficit from an aerodynamic body is disclosed. An air jet is injected into an ejector mixing chamber in the aerodynamic body. The air jet creates a suction effect in the ejector mixing chamber, which suctions boundary layer air from a perforated surface in at least one side of the aerodynamic body into a plenum chamber and into the ejector mixing chamber. The air jet ejects the boundary layer air and the air jet from a trailing edge slot of the ejector mixing chamber. Suctioning the boundary layer air and ejecting the boundary layer air and the air jet from the trailing edge slot reduces a velocity deficit on a trailing edge of the aerodynamic body. The reduced velocity deficit and the suctioning of boundary layer air reduce noise, turbulence, blade stress, and blade deformation.
Abstract:
A rotor hub fairing system for use in a counter-rotating, coaxial rotary wing aircraft is provided including an upper hub fairing defined about an axis. A lower hub fairing is similarly defined about the axis. An airfoil shaped shaft fairing is disposed between the upper hub fairing and the lower hub fairing. The airfoil shaped shaft fairing has a thickness to chord (t/c) ratio in the range of about 20% and about 45%.