Abstract:
Heavier-than-air, aircraft having flapping wings, e.g., ornithopters, where angular orientation control is effected by variable differential sweep angles of deflection of the flappable wings in the course of sweep angles of travel and/or the control of variable wing membrane tension.
Abstract:
The disclosure relates to a biomimetic insect. The biomimetic insect includes a trunk and at least two wings connected to the trunk. The wing includes a carbon nanotube layer and a vanadium dioxide layer (VO2) layer stacked with each other. Because the drastic, reversible phase transition of vanadium dioxide, the wing has giant deformation amplitude and fast response.
Abstract:
Heavier-than-air, aircraft having flapping wings, e.g., ornithopters, where angular orientation control is effected by variable differential sweep angles of deflection of the flappable wings in the course of sweep angles of travel and/or the control of variable wing membrane tension.
Abstract:
A device comprising a thin film solar cell with an integrated flexible antenna, such as a meander line antenna, is disclosed. In an embodiment, the device comprises a substrate and an array of solar cells disposed on the substrate, wherein the array of solar cells are interconnected by metal conductors that carry DC power from the solar cells and which form at least part of the flexible antenna. In their capacity as an antenna, the metal conductors operate cooperatively with the solar cells to radiate an RF signal, receive an RF signal, or both radiate and receive an RF signal. The device optionally comprises a choke disposed on the substrate and electrically coupled to the array of solar cells, wherein the choke operates to impede conduction of the RF signal. A method of making the disclosed device is also disclosed.
Abstract:
An autonomous flapping wing aerial vehicle can have a vehicle body, a pair of flapping wings, tunable wing hinges, and elastic drive mechanisms. The tunable wing hinges can be coupled to the flapping wings. Each wing hinge can be constructed to deliver a force to a respective one of the flapping wings to alter end points of a stroke thereof. The elastic drive mechanisms can rotate the flapping wings about pivot points to produce the strokes of the flapping wings. The elastic drive mechanism can be driven at or near a resonance thereof. Alterations to the strokes of the flapping wings produced by the combined effect of the tunable wing hinges and the elastic drive mechanisms, operating in parallel, can provide steering control of the aerial vehicle.
Abstract:
A resonance engine is disclosed including: a driver plate, to which is coupled at least one oscillatory transducer; a drive signal generator connected to the oscillatory transducer for excitation thereof; a first spring-mass resonator, having a first natural resonant frequency, with a proximal end attached to the driver plate and a free distal end; and a reaction means attached to the driver plate substantially opposite to the first spring-mass resonator. When the oscillatory transducer is excited by a drive signal from the generator having a component at or close to said natural resonant frequency, the first spring-mass resonator oscillates at resonance, substantially in anti-phase to the driver plate. Small vibrational strains in the oscillatory transducer are converted to large strains of controllable kinematic movements.
Abstract:
A flapping wing driving apparatus includes at least one crank gear capstan rotatably coupled to a crank gear, the at least one crank gear capstan disposed radially offset from a center of rotation of the crank gear; a first wing capstan coupled to a first wing, the first wing capstan having a first variable-radius drive pulley portion; and a first drive linking member configured to drive the first wing capstan, the first drive linking member windably coupled between the first variable-radius drive pulley portion and one of the at least one crank gear capstan; wherein the first wing capstan is configured to non-constantly, angularly rotate responsive to a constant angular rotation of the crank gear.
Abstract:
Heavier-than-air, aircraft having flapping wings, e.g., ornithopters, where angular orientation control is effected by variable differential sweep angles of deflection of the flappable wings in the course of sweep angles of travel and/or the control of variable wing membrane tension.
Abstract:
A micro aviation vehicle is provided which includes a body, a first wing set, a second wing set, an actuator and a power module. The first wing set and the second wing set are disposed on the left and right sides of the body respectively, and are connected with one end of the actuator. A first angle controller and a second angle controller are used to control the swing angle of the first wing set and the swing angle of the second wing set, respectively. The power module draws the actuator through the rotation of a driving gear, and then the first wing set together with the second wing set are associated with the actuator to flap back-and-forth.
Abstract:
A drive assembly for a wing of a micromechanical flying insect. The drive assembly comprises a honey comb structure. A method for flying a micromechanical flying insect comprising moving a wing with a drive assembly having a stiffness to weight ratio greater than about 16×1010 N/mKg.
Abstract translation:用于微机械飞行昆虫机翼的驱动组件。 驱动组件包括蜂巢结构。 一种用于飞行微机械飞行昆虫的方法,包括用具有大于约16×10 10 N / mKg的刚度重量比的驱动组件移动机翼。