Abstract:
A ram air fan (RAF) assembly is provided and includes a ram air inlet, a heat exchanger disposed in the ram air inlet, an RAF disposed in the ram air inlet to drive airflow through the heat exchanger, a sensor disposed in the ram air inlet proximate to the RAF and a controller. The controller is operably coupled to the RAF and the sensor and is configured to drive rotations of the RAF to achieve a target RAF rotational speed in accordance with a determination that a reading generated by the sensor is indicative of a surge event.
Abstract:
A system for controlling the clearance distance between an impeller blade tip of a centrifugal compressor and a radially inner surface of a segregated impeller shroud in a turbine engine. The system comprises a driving mechanism coupled to a portion of a segregated impeller shroud. The driving mechanism comprises a driving arm and threaded axial member configured to translate motion of an actuator ring into axially forward and aft motion of the portion of the segregated impeller shroud.
Abstract:
The invention relates to a method for operating a gas turbine power plant, including a gas turbine, a HRSG following the gas turbine, an exhaust gas blower, and a carbon dioxide separation plant which separates the carbon dioxide contained in the exhaust gases and discharges it to a carbon dioxide outlet, the gas turbine, HRSG, exhaust gas blower, and carbon dioxide separation plant being connected by means of exhaust gas lines. According to the method a trip of the gas turbine power plant includes the steps of: stopping the fuel supply, switching off the exhaust gas blower, and controlling the opening angle of a VIGV at a position bigger or equal to a position required to keep a pressure in the exhaust gas lines between the HRSG and the exhaust gas blower above a minimum required pressure. The invention relates, further relates to a gas turbine power plant configured to carry out such a method.
Abstract:
An anti-surge system capable of anticipating a surge event in a compressor for readying the actuator to quickly actuate the anti-surge valve from the closed position to the open position. The control system includes a compressor surge controller configured to transmit a signal to the valve positioner when the operating point of the valve is approaching the surge control line. The compressor surge controller may monitor an operating margin equal to the difference between the operating point and the surge control line, and when the operating margin falls below a prescribed threshold, the compressor surge controller may send a signal to the positioner. In turn, the positioner may vent some pressure from the actuator. In this way, the dead time of the anti-surge valve on the valve seat is minimized and the valve will react more promptly to an opening signal.
Abstract:
The present disclosure relates generally to system and method for detecting fuel shutoff valve failures in a system including multiple fuel shutoff valves connected in series. By commanding different fuel shutoff valves to close and detecting changes in the system operating conditions, the system and method may determine if any of the fuel shutoff valves are not working properly.
Abstract:
An airfoil for a turbine engine includes pressure and suction sides that extend in a radial direction from a 0% span position at an inner flow path location to a 100% span position at an airfoil tip. The airfoil has a relationship between a total chord length and a span position and corresponds to a curve that has an increasing total chord length from the 0% span position to a first peak. The first peak occurs in the range of 45-65% span position, and the curve either remains generally constant or has a decreasing total chord length from the first peak to the 100% span position. The total chord length is at the 0% span position in the range of 8.2-10.5 inches (20.8-26.7 cm).
Abstract:
Systems and methods of controlling solid propellant gas pressure and vehicle thrust are provided. Propellant gas pressure and a vehicle inertial characteristic are sensed. Propellant gas pressure commands and vehicle thrust commands are generated. A propellant gas pressure error is determined based on the propellant gas pressure commands and the sensed propellant gas pressure, and vehicle thrust error is determined based on the vehicle thrust commands and the sensed vehicle inertial characteristic. Reaction control valves are moved between closed and full-open positions based on the determined propellant gas pressure error and on the determined vehicle thrust error. The system and method allow the reaction control valves to operate at variable frequencies or at fixed frequencies. The system and method also allows propellant pressure to be commanded to follow a predetermined pressure profile or commanded to vary “on-the-fly.”
Abstract:
A turbocharger system comprises a first relatively small turbocharger and a second relatively large turbocharger connected in series and an exhaust gas flow control valve. The exhaust control valve has an inlet port communicating with the exhaust gas flow upstream of the first turbine a first outlet port communicating with the exhaust flow downstream of said first turbine but upstream of said second turbine, and a second outlet port communicating with the exhaust flow downstream of said second turbine. The valve is operable to selectively permit or block flow through the first and second outlet ports.
Abstract:
A control method for cooling a turbine stage of a gas turbine, whereby cooling air is bled from combustion air flowing in a compressor of the gas turbine, and is fed to a cooling circuit staring from a stator of the turbine stage; and cooling airflow is adjusted as a function of the pressure at the inlet of the cooling circuit, and as a function of the combustion air pressure at the exhaust of the compressor; more specifically, there is a feedback control setting a setpoint, which is predetermined as a function of the power output of the turbine to reduce contaminating emissions.
Abstract:
Certain embodiments of the invention may include systems, methods, and apparatus for confirming ignition in a gas turbine. According to an example embodiment of the invention, a method is provided for confirming ignition associated with a gas turbine combustor. The method can include receiving one or more permissive signals associated with one or more gas flow control valves, receiving one or more fuel supply pressure signals, receiving one or more fuel igniter signals, and receiving one ore more compressor pressure discharge (CPD) signals. The method can also include determining an ignition status associated with the gas turbine combustor based at least in part on the one or more permissive signals, the one or more fuel supply pressure signals, the one or more fuel igniter signals, and a qualified change in the one or more CPD signals. The method can also include outputting an ignition status signal based on the determined ignition status.