Abstract:
According to a method and apparatus taught herein, a Rake receiver circuit selectively operates with or without colored interference compensation, in dependence on current operating conditions. For example, in one embodiment the Rake receiver circuit comprises one or more processing circuits that are configured to generate Rake combining weights in a first mode of operation as first combining weights calculated from channel estimates corresponding to a set of Rake signal fingers. In a second mode, the processing circuit(s) generate the Rake combining weights as compensated combining weights obtained by compensating the first combining weights with second combining weights calculated from colored interference estimates corresponding to a set of Rake probing fingers.
Abstract:
A method for use in receiving a spread-spectrum signal includes receiving an input signal. The input signal includes a first plurality of multipath components. The method also includes despreading the first plurality of multipath components. The step of despreading includes computing a plurality of corresponding delays. The method also includes computing a plurality of combining weights based, at least in part, on interference correlation between at least two of the first plurality of multipath components, selecting, according to at least one criterion, a subset of the plurality of combining weights, and despreading and combining a second plurality of multipath components using at least one quantity related to the selected plurality of combining weights and a plurality of delays and multipath components corresponding to the plurality of selected combining weights. This Abstract is provided to comply with rules requiring an Abstract that allows a searcher or other reader to quickly ascertain subject matter of the technical disclosure. This Abstract is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. 37 CFR 1.72(b).
Abstract:
A detection strategy is selected for use in detecting a shared control channel that is transmitted on a physical channel in a communication system. This involves using a previously selected detection strategy to detect the shared control channel. The power of the detected shared control channel is measured. At least two correlation results are generated by correlating the measured power with each of at least two parameters that are associated with one or more other physical channels used in the communication system. Based on the at least two correlation results, a detection strategy is selected for upcoming use in detecting the shared control channel.
Abstract:
According to method and apparatus embodiments taught herein, power control feedback is generated for a control channel signal that is received in conjunction with a reference channel signal based on the reference channel's signal strength or quality, and an estimate of a gain factor relating the control and reference channel signals. By way of non-limiting example set in a Wideband CDMA (WCDMA) context, the reference channel signal comprises a Common Pilot Channel (CPICH) signal and the control channel signal comprises a Fractional Dedicated Physical Channel (F-DPCH) signal that is transmitted at an (unknown) power gain relative to the CPICH signal.
Abstract:
The present invention relates to an apparatus and method for estimating down link wide-band interference power and noise power in a mobile communications system. By using filters that are matched to the multipath channels of a number of base stations the received powers from the base stations may be differentiated and calculated. The impulse responses of the multipath channels are estimated and the filters are matched such that the impulse response of each filter is the complex conjugate of the time reverse of the estimated impulse response of one of the multipath channels. White noise is modelled as a signal that has passed a single-ray channel. The received noise power is estimated by means of the output signals from the matched filters and the total received signal.
Abstract:
A receiver includes a baseband processor for selecting a set of demodulation processing delays for received signal demodulation from a larger set of candidate delays. In one embodiment, the baseband processor selects the set of demodulation processing delays by calculating at least one metric for each demodulation processing delay in the set of candidate delays, iteratively reducing the set of candidate delays by eliminating one or more demodulation processing delays from the set as a function of comparing the metrics, and setting the processing delays for received signal demodulation to the candidate delays remaining after reduction. In a Generalized RAKE (G-RAKE) embodiment, the metric corresponds to combining weight magnitudes associated with G-RAKE finger delays. In a chip equalizer embodiment, the metric corresponds to coefficient magnitudes associated with equalization filter tap delays. In other embodiments, the metric corresponds to Signal to Interference Ratios (SIRs) associated with the set of candidate delays.
Abstract:
A receiver for use in a communications system, said receiver comprising a plurality of receiving means, at least two of said receiving means arranged to process the same signal received at different times; means for combining the output of at least two of said receiving means with different weights, said weights being arranged to take into account information relating to a spreading code of at least one signal other than said same signal.
Abstract:
Exemplary received signal processing may be based on maintaining a model of received signal impairment correlations, wherein each term of the model is updated periodically or as needed based on measuring impairments for a received signal of interest. An exemplary model comprises an interference impairment term scaled by a first model fitting parameter, and a noise impairment term scaled by a second model fitting parameters. The model terms may be maintained based on current channel estimates and delay information and may be fitted to measured impairment by adapting the model fitting parameters based on the measured impairment. The modeled received signal impairment correlations may be used to compute RAKE combining weights for received signal processing, or to compute Signal-to-Interference (SIR) estimates. Combined or separate models may be used for multiple received signals. As such, the exemplary modeling is extended to soft handoff, multiple antennas, and other diversity situations.
Abstract:
A flexible Fast Walsh Transform circuit provides configurable FWT sizes, and is suitable for use in radio receivers where the received signal may be generated using varying spreading codes and/or varying numbers of multi-codes. Such signal types are commonly encountered in wireless communication systems like those based on the Wideband CDMA (W-CDMA) or IS-2000 (cdma2000) standards, and particularly with the higher data rate provisions of those standards. In one application, a RAKE receiver includes RAKE fingers that each include one of the flexible FWT circuits, such that each finger despreads the received signal using variably sized FWTs in accordance with the characteristics of the received signal. The flexibility in FWT sizing may derive from, for example, the inclusion of separately selectable but differently sized FWT circuits, or from the inclusion of a configurable FWT circuit capable of generating different sizes of FWTs.
Abstract:
Methods and systems for processing received radio signals are described wherein the finite alphabet quality of digital transmissions is utilized to improve performance. Nonsynchronous sampling of received signals introduces intersymbol interference which is compensated for by these methods and systems. Different types of signal modulation, and their impact on this type of intersymbol interference are discussed. A robust diversity combining technique, usable in conjunction with antenna arrays is developed.