摘要:
A method for use in receiving a spread-spectrum signal includes receiving an input signal. The input signal includes a first plurality of multipath components. The method also includes despreading the first plurality of multipath components. The step of despreading includes computing a plurality of corresponding delays. The method also includes computing a plurality of combining weights based, at least in part, on interference correlation between at least two of the first plurality of multipath components, selecting, according to at least one criterion, a subset of the plurality of combining weights, and despreading and combining a second plurality of multipath components using at least one quantity related to the selected plurality of combining weights and a plurality of delays and multipath components corresponding to the plurality of selected combining weights. This Abstract is provided to comply with rules requiring an Abstract that allows a searcher or other reader to quickly ascertain subject matter of the technical disclosure. This Abstract is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
摘要:
Hypothesis tests, such as maximum likelihood detections, are executed on symbol sequences received by, for example, a user equipment (UE) in a communication system. The hypothesis tester checks a received sequence against a group of predetermined sequences that possibly could have been sent to the UE. For received sequences that are matched or not matched by the hypothesis tester with high confidence, complete decoding, for example, with a Viterbi decoder, is not necessary. Instead, complete decoding is used as a “tie-breaker” for those sequences which the hypothesis tester cannot match or not match with desired confidence levels.
摘要:
Hypothesis tests, such as maximum likelihood detections, are executed on symbol sequences received by, for example, a user equipment (UE) in a communication system. The hypothesis tester checks a received sequence against a group of predetermined sequences that possibly could have been sent to the UE. For received sequences that are matched or not matched by the hypothesis tester with high confidence, complete decoding, for example, with a Viterbi decoder, is not necessary. Instead, complete decoding is used as a “tie-breaker” for those sequences which the hypothesis tester cannot match or not match with desired confidence levels.
摘要:
A method for use in receiving a spread-spectrum signal includes receiving an input signal. The input signal includes a first plurality of multipath components. The method also includes despreading the first plurality of multipath components. The step of despreading includes computing a plurality of corresponding delays. The method also includes computing a plurality of combining weights based, at least in part, on interference correlation between at least two of the first plurality of multipath components, selecting, according to at least one criterion, a subset of the plurality of combining weights, and despreading and combining a second plurality of multipath components using at least one quantity related to the selected plurality of combining weights and a plurality of delays and multipath components corresponding to the plurality of selected combining weights. This Abstract is provided to comply with rules requiring an Abstract that allows a searcher or other reader to quickly ascertain subject matter of the technical disclosure. This Abstract is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. 37 CFR 1.72(b).
摘要:
A base station herein assists a radio network controller (RNC) to allocate scrambling codes in a cell. The base station's assistance advantageously permits the RNC to allocate different length scrambling codes to different mobile terminals (or downlink carriers) in the cell. Specifically, the base station determines a preference for whether the length of a scrambling code to be allocated to each terminal or carrier should be short or long, based on whether uplink communications transmitted by the terminal, or downlink communications transmitted over the carrier, are to be processed with a high-complexity receiver or a low-complexity receiver. The RNC receives these preferences from the base station and takes them into account in order to allocate either a short scrambling code or a long scrambling code to each terminal or downlink carrier in the cell. The RNC then propagates the scrambling code allocations throughout the cell.
摘要:
Methods and apparatus are disclosed for detecting a control channel message transmitted on one of a plurality of shared control channels and targeted to a wireless receiver. In an exemplary method, messages transmitted over a plurality of shared control channels are decoded, and at least one likelihood metric is determined for each of the decoded messages. A best candidate is selected from the decoded messages, based on the likelihood metrics, and the at least one likelihood metric for the best candidate is compared to corresponding likelihood metrics for the messages other than the best candidate to determine whether the best candidate is a valid message. Wireless communication receivers configured correspondingly are also disclosed.
摘要:
Techniques for expanding the set of addressable interfering signals in an interference cancelling receiver are described, where the task of control message detection from interfering cells is integrated in an iterative receiver process where increasingly better a priori information on the received data signals from the previous iteration is used to detect additional control messages and successively grow the set of interfering signals included in the receiver's interference mitigation processing. In an example method, first estimated symbols for a desired signal are generated. A control channel corresponding to a first interfering signal is detected, where said detecting is based on the first estimated symbols. Signal characteristics information for the first interfering signal is then derived from the detected control channel signal, and used to generate second estimated symbols for the desired signal, using an interference-mitigation technique to mitigate the effects of the interfering signal.
摘要:
In one or more aspects, the present invention improves the efficiency of soft information transfer within a soft-value processing apparatus, by reducing in some sense the “amount” of soft information transferred between constituent processor circuits within the apparatus, without forfeiting or otherwise compromising the transfer of “valuable” soft information. In one example, the soft values produced by a constituent processor circuit are identified as being reliable or unreliable according to a reliability threshold. Some or all of the unreliable values are omitted from a soft value information transfer to another constituent processor circuit, or they are quantized for such transfer. The reduction in memory requirements for soft information transfer advantageously allows the use of lower power, less complex, and less expensive circuitry than would otherwise be required in the apparatus, which may be, as a non-limiting example, a Turbo receiver in a wireless communication device.
摘要:
The present invention includes a method and apparatus for autonomously determining by a first UE the identities (IDs) of one or more other UEs that are operating in or around the same network area as the first UE. More particularly, the first UE determines with a defined reliability the UE ID of an otherwise unknown UE based on receiving and processing an HS-SCCH transmission targeted to the unknown UE. By learning actual UE IDs for one or more other UEs operating in or around the same area as the first UE, the first UE can then properly decode HS-SCCH transmissions to those other UEs, and thereby gain knowledge of the signal structures used for data (HS-PDCH) transmissions to those other UEs. Advantageously, the first UE applies such knowledge in its desired-signal receiver processing, such as for enhancing channel estimation and/or performing structured-signal interference cancellation.
摘要:
Controlling the polarization state of signals to be transmitted from a MIMO capable radio base station node to a plurality of user equipment, which radio base station node comprises a precoder unit connecting a first and a second virtual antenna port to a respective first and second transmit antenna port, by the steps of controlling (S10) a relative phase between transmitted signals from the first and second transmit antenna port to provide a predetermined pair of orthogonal polarization states for signals transmitted on the first and second virtual antenna ports, and interchanging (S20) the polarization states of the first and second virtual antenna ports, to provide transmitted polarized signals with alternating polarization states.