摘要:
A system is described for controlling the transition of laminar/turbulent flow at a surface which comprises a thin narrow strip heater disposed adjacent the surface and extending substantially transversely of the flow of the air stream thereacross, the heater being resiliently held in tension on or in closely spaced relationship to the surface, and a power source operatively connected to the heater for applying pulsed voltage of preselected amplitude and frequency to the heater.
摘要:
A method of applying and controlling vortex lift to a unique high-lift airfoil (29) is described wherein the planform of the airfoil (29) comprises a swept-forward outer panel (31) and a swept-aft or unswept inboard panel (33). A leading edge vortex (37) is formed on (31) and attached flow is maintained on (33). The attached flow on (33) causes the vortex (37) of the airfoil (29) to turn downstream and also induces axial flow along axis of vortex (37). Both of these results serve to delay vortex burst. A high-lift trailing edge device (45) such as a mechanical flap as the circulation control concept will induce a high leading edge flow angularity and cause the vortex (37) to grow in strength, thereby increasing vortex lift. The vortex (37) replaces the high-weight, high-lift leading device that would otherwise be required.
摘要:
In one form of the present invention, boundary layer air is diverted from a probe in an aircraft and freestream air is induced to impinge upon the probe.
摘要:
Disclosed is an increased lift aircraft or similar device having an airfoil shaped forward structure. A mass flow engine, such as a jet engine, is positioned to the rear of this structure. In operation, the intake air flow for the engine flows around the forward structure, generating lift.
摘要:
An aircraft having an airfoil provided with a plurality of openings on the upper lift surface thereof for directing an airflow over substantially the entire area of that surface. This flow decreases the pressure over the upper lift surface for creating lift forces sufficient to lift the aircraft. The size of the opening is varied by means of a selectively positionable, pivotal flap. A wall portion cooperating with the flap to form the opening may have one of several configurations including planar, a wedge, and an isosceles triangle with its apex adjacent the outer end of the flap. Further, an upper airfoil shaped member may be arranged at the lift surface of the airfoil adjacent the opening. Openings in various portions of the wings may be inversely positionable from symmetrically arranged openings for controlling the attitude of the aircraft. A propeller is arranged for ducting air to the openings. This propeller, which may be supplemented by at least one compressor stage, has variable and reversible pitch tips for selectively and variably providing thrust bidirectionally along the trust line of the aircraft. When positioned for reversed thrust, these tips will provide a thrust which counters any thrust created by air escaping from the openings and permit the aircraft to hover. The airfoil is also provided with passages therethrough arranged in symmetrically spaced portions thereof in parallel to the aircraft thrust line. These passages have valves associated therewith and arranged for selectively and inversely directing airflow from the passages for imparting a moment to the airfoil which permits turning of the aircraft.
摘要:
A propulsion system coupled to a vehicle. The system includes a convex surface, a diffusing structure coupled to the convex surface, and at least one conduit coupled to the convex surface. The conduit is configured to introduce to the convex surface a primary fluid produced by the vehicle. The system further includes an intake structure coupled to the convex surface and configured to introduce to the diffusing structure a secondary fluid accessible to the vehicle. The diffusing structure comprises a terminal end configured to provide egress from the system for the introduced primary fluid and secondary fluid.
摘要:
Systems and methods are provided for experimentally determining optimized placement and operating conditions, e.g., amplitude, phase, or frequency, of active flow control actuators by executing an optimization routine to sequentially activate varying subsets of active flow control actuators of a plurality of active flow control actuators spatially distributed within a flow field, calculating a cost function of each of the subsets of sequentially activated active flow control actuators based on respective measurements of one or more parameters, e.g., integral variables or proxies to the integral variables, within the flow field by one or more sensors, and determining an optimal subset of active flow control actuators based on the respective cost functions of each of the subsets of sequentially activated active flow control actuators.
摘要:
Systems and methods are described herein to implement transverse momentum injection at low frequencies to directly modify large-scale eddies in a turbulent boundary layer on a surface of an object. A set of transverse momentum injection actuators may be positioned on the surface of the object to affect large-scale eddies in the turbulent boundary layer. The system may include a controller to selectively actuate the transverse momentum injection actuators with an actuation pattern to affect the large-scale eddies to modify the drag of the fluid flow on the surface. In various embodiments, the transverse momentum injection actuators may be operated at frequencies less than 10,000 Hertz.
摘要:
An aircraft having reverse thrust capabilities includes a fuselage, a plurality of flight components, a pilot control located within the fuselage, a sensor attached to the pilot control configured to detect an aircraft datum from the pilot control, and a flight controller, located within the fuselage, the flight controller configured to receive the aircraft datum from the sensor, and initiate a reverse torque command of a flight component of the plurality of flight components as a function of the aircraft datum.
摘要:
The invention relates to an air system for an aircraft, that includes air consumers; air sources and a network of ducts and associated control valves controlled by a control unit. The air system is characterized in that: the network of ducts and associated valves includes at least one isolation valve, arranged between an air bleed device and an air duct connecting an air conditioning pack and an auxiliary power unit; the control unit is configured to be able to determine an ideal configuration of the control valves according to the identified requirements of each consumer and a degraded configuration that makes it possible to supply air to predetermined air consumers from the available air sources when the ideal configuration is not attainable.