Abstract:
A ruggedized, reliable and sealed connector assembly for the a network, such as the Ethernet, the telephone network, and other applications, includes a housing assembly having push-on, auto-latching connection mechanism that may be used to seal and protect an industry-standard connector. The illustrative connector assembly comprises a first housing assembly for housing a first connector half, such as a jack, and a second housing assembly for housing a second connector half for mating with the first connector half, such as a plug. When the first housing assembly mates with the second housing assembly, the housed plug and jack also mate, in a sealed, protected environment. A locking sleeve is rotated against a spring force during initial insertion of the second housing assembly into the other, and permitted to rotate back into a locking position upon completion of insertion, thereby locking the first housing assembly to the second housing assembly and the first connector half to the second connector half. The first connector half (i.e., a jack) may be removably snapped into place in the first housing assembly and the second connector half (i.e., a plug) may be removably snapped into place in the second housing assembly. The second housing assembly may includes a means for disabling a latching lever arm on a plug component to allow the disengagement and unlocking of the connector assembly by rotating the locking sleeve, rather than requiring manual disengagement of the first and second connector halves.
Abstract:
An outlet (70, 75, 76, 78, 79) for a Local Area Network (LAN), containing an integrated adapter (21, 25) that converts digital data to and from analog video signal. Such an outlet allows using analog video units in a digital data network (80), eliminating the need for a digital video units or external adapter. The outlet may include a hub (31, 41) that allows connecting both an analog video signal via an adapter, as well as retaining the data network connection, which may be accessed by a network jack (73). The invention may also be applied to a telephone line-based data networking system. In such an environment, the data networking circuitry as well as the analog video adapters are integrated into a telephone outlet, providing for regular telephone service, analog video connectivity, and data networking as well. In such a configuration, the outlet would have a standard telephone jack (71), an analog video jack (72) and at least one data networking jack (73). Outlets according to the invention can be used to retrofit existing LAN and in-building telephone wiring, as well as original equipment in new installation
Abstract:
An all-in-one network communication cable and security cable apparatus for securing computing devices is provided. The all-in-one cable combines the security aspects of a steel or other cut-proof cable with a network communication cable and provides a locking mechanism that only permits the authorized user to disconnect the all-in-one cable from the computing device and the structure mounted network communication connection jack. In one exemplary embodiment of the present invention, a standard RJ45 Ethernet Cable is provided with a cut-proof casing and a slidable locking sheath that is capable of being slid under the depressible lever of the RJ45 connector. This locking mechanism includes a lock that may be set by the user so that the locking mechanism is not removable without the proper key or combination. The slidable locking sheath, when engaged, does not allow the lever of the RJ45 connector to be depressed.
Abstract:
A cable connector for providing a communication network comprises a first connector (10) forming a plurality of first arrays (11) with first terminals (11a), a second connector (5) forming a plurality of second arrays (6) and at least one twig array (7) with second terminals (6a). Each array consists of the same number of first or second terminals (6a, 11a) arranged at intervals and in the same pattern. The first and second arrays (6, 11) and twig arrays (7) are form a plurality of rows arranged at the same intervals. The second connector (5) is provided with at least one more array than the first connector (10). Thus, the first connector (10) can be selectively connected to the second arrays (6) and twig arrays (7) of the second connector (5) for altering the configuration of the electrical connection. A plurality of modular communication cable units are installed in a manner such that the first connector of the front cable unit is connected to the second connector of the next cable unit. At each junction point, it is possible to provide the required number of enabled twig connectors depending on the required number of workstations. The corresponding number of disconnected lines which do not receive data and signals from upstream remain on standby in Dummy mode.
Abstract:
An identification labeling system having a faceplate with a recess and a label cover that may be retained within the recess. The label cover may have compartments for retaining identification labels. The label cover has latching legs and the recess has a complementary retention ledge. A lift slot may be provided to facilitate removal of the label cover. The recess may contain holes to accommodate individual molded identification icons. The recess may include tapered corners to accommodate strip labels of different widths and lengths, such labels being positioned by the tapered corners of the recess and the label cover. The recess includes end configurations that prevent a label from passing through the surface of the faceplate. The label cover has a thickness so as to be flush with the faceplate. The label may be the same color as the faceplate.
Abstract:
A communication cable comprising a trigger and a wireless transmitter coupled to the trigger and adapted to transmit a wireless transmitter coupled to the trigger and adapted to transmit a wireless signal to activate a user identifiable locator adjacent a cable connector disposed on a device. A processor-based system a cable connector, a user identifiable locator disposed adjacent the cable connector, and a controller coupled to the user identifiable locator and triggerable wirelessly to facilitate guided connection between the cable connector and a communication cable.
Abstract:
An embodiment is a telecommunication outlet mounted on a printed circuit board (PCB) including a vertical shield extension and an inner shield extension which protrude downwards beyond the PCB. The vertical shield extension and the inner shield extension form a cross structure protruding downwards beyond the PCB, in which the cross structure defines four shielded quadrants each for housing contact tails of a tip and ring pair protruding downwards beyond the PCB. Shielding contact tails from each other with the extensions of the cross structure provides enhanced shielding and reduces crosstalk.
Abstract:
A connector is disclosed for electrically connecting a conductor to a terminal. The connector has a body and an electrically conductive member. The body has a passage for positioning the conductor therein. The passage has an aperture to an outer surface of the body. The electrically conductive member has a first portion and a second portion. The first portion extends through the aperture for crimping the conductor in the passage, and the second portion is for electrically connecting to the terminal. The electrically conductive member moves to disconnect the second portion from the terminal while still crimping the conductor in the passage.
Abstract:
A patch panel including a plurality of electrical connector assemblies, wherein each of the electrical connector assemblies comprises a first jack presented on a first side of a panel frame of the patch panel and a second jack electrically linked to the first jack to form a jack pair and presented on a second side of the panel frame. Both the first jack and the second jack are presented at an angle with respect to the panel frame, and both the first jack and the second jack may be engaged using a patch cord. The first and second jack of each jack pair are at a 90-degree angle relative to one another.
Abstract:
A LAN connector is connected with a LAN cable connector inserted thereinto. The LAN connector comprises a flexible portion formed outside a modem-cable-connector occupied space within a housing having a size accommodating the LAN cable connector being inserted thereinto, and a stopper portion formed within the modem-cable-connector occupied space. The stopper portion is displaceable together with the flexible portion. When the modem cable connector is inserted into the housing, the flexible portion is not pushed and bent by the modem cable connector, and the stopper portion stops the modem cable connector. When the LAN cable connector is inserted into the housing, the flexible portion is pushed and bent by the LAN cable connector so as to cause the stopper portion to be withdrawn out of the modem-cable-connector occupied space.