Abstract:
Methods and apparatus for detecting body vital signs through the use of a Bioelectric Impedance Spectroscopy (BIS), either by (a) direct contact with the person (such as through one or more of their fingers) or (b) measurement of reflections from a field projected into the person's body. The techniques may be implemented using the projected capacitive touch array in a device such as the screen of a smartphone or tablet computer, or the touchpad of a laptop computer.
Abstract:
A method for operating a two-dimensional touch array by providing virtual grid intersections. The techniques may be used to improve the array resolution. It may also be used to detect fingerprint ridge and valley detail even when the finger is not moving, and when the array node spacing is much greater than the ridge and valley spacing.
Abstract:
A touch screen, now incorporated in most smart phones, presents an effective and transparent method to incorporate continuous active user verification schemes. The projected capacitive grid structure can be used to capture enough information to verify that a valid user currently has possession of the mobile device, even while the user is not consciously engaged in an active verification interface. Further processing, such as habitual gesture recognition, can augment the process.
Abstract:
A planar fixed area thin film antenna-coupled metal-insulator-metal (MIM) rectifier of arbitray metal with a native nickel oxide insulator. Devices can be designed for millimeter wave, IR, NIR and visible wavelengths.
Abstract:
A rectifier comprising a metal-insulator-metal (MIM) structure. The insulator may be a native oxide with an adjacent layer of graphene. In one implementation, the rectifier is used in an electromagnetic energy collector consisting of a planar waveguide formed of multiple material layers having at least two different dielectric constants. MIM rectifiers are aligned with mirrors are formed within the waveguide core. In some arrangements, a plurality of MIM rectifiers are disposed in a column or 3D array beneath each mirror.
Abstract:
An electromagnetic energy collector includes a planar waveguide formed of multiple material layers having at least two different dielectric constants. Mirrors formed within the waveguide core. Metal-insulator-metal (MIM) detectors are aligned with the mirrors, and disposed below the bottom surface of the waveguide. The mirrors may be etched at an angle into the waveguide. In some arrangements, wherein a plurality of MIM detectors are disposed in a column or 3D array beneath each mirror. A wavelength range of the MIM detectors disposed closer to a respective mirror is lower than a wavelength range of a MIM detector disposed farther away from the same mirror.
Abstract:
A Nuclear Quadrupole Resonance detection system with features that include: a) slab radiating structure for the transmit path; b) reduced impedance transmit radiator; c) portal-embedded stripline couplers for receive path; d) wideband chirps each encompassing multiple simultaneous resonances; e) chirp sequencing enabling three channel architecture; f) magnetic amplification effect of ferrite-based directional couplers; g) determining position of substance within portal.
Abstract:
An compact manpack format antenna operating over a broad bandwidth. In one arrangement, the antenna is formed from a set of five hollow cylindrical conductive elements. Several cylinders provide, for example, a VHF/UHF radiator section and other cylinders form an L-band radiator section. A bottom leg of the L-band section operates as part of the VHF/UHF section via coupling between that lower L-band leg and the VHF/UHF section. This coupling arrangement reduces the required overall physical length of the antenna.