Abstract:
A method for automatic determination of optimal Magnetic Resonance Imaging (MRI) acquisition parameters for imaging in an MRI instrument a sample containing two types of tissue, tissue A and tissue B, wherein said method comprises: determining T1A, T2A, T1B, T2B, ρA, and ρB, where ρ represents the density of NMR-active nuclei being probed; setting initial values of TR and TE; determining the signal intensities SA and SB from the equation S=ρE1E2, where E1=1−e−TR/T1 and E2=e−TE/T2; calculating the contrast-to-noise ratio for tissue A in the presence of tissue B (CNRAB) from the equation CNR AB = P ( S A - S B ) T R , where P is a proportionality constant; and, determining optimal values of TR and TE that yield a maximum value of CNRAB(TR,TE). In other embodiments of the invention, the method includes optimization of additional acquisition parameters. An MRI system in which the method is implemented so that acquisition parameters can be optimized without any intervention by the system operator is also disclosed.
Abstract:
The present invention provides a chamber having at least one operator hand access port; the port comprising a port aperture located within the chamber wall; and at least two flexible non-resilient lightweight sealing gas-tight flaps(SFs), disposed the same plane of the port aperture in an overlapping manner, entirely enclosing the port aperture; each of the SFs is defined by a port aperture edge and chamber edges; the chamber edges are anchored to the chamber wall along more than half of the perimeter of the flap, at a distance from the center of the port greater than the radius of the port and beyond its perimeter; the port aperture edge of each flap is stretched across an entire chord of the port aperture; stretched port apertures edges define an interior access zone, disposed the same plane of the port aperture, characterized solely by the port aperture edges.
Abstract:
Devices and methods for providing an adjustable open-bore magnetic resonance device (MRD) that enable personalized accommodation for users of different sizes. The MRD includes a first main magnetic source and a second main magnetic source in a face-to-face orientation. The magnetic sources are separated by a distance that is adjustable by way of an endoskeletal height adjuster. In some embodiments, a superconducting electromagnet coiled around an oval defines the magnetic volume of interest. In such embodiments, the perimeter of the oval includes a plurality of trapezoid elements housing the coil of the electromagnet, and the trapezoid elements can be moved outwards and inwards relative to the oval's center in the plane of the oval.
Abstract:
A pneumatic sample feedway that is embeddable into a magnetic resonance imaging (MRI) device. The feedway includes: a plurality of capsules enclosing a biological tissue sample; and a conductor pipe connected to a source of a compressed fluid. The pipe receives a train of the capsules and pneumatically forwards the train into the MRI device. The pipe has a proximal terminal that loads the train of capsules into the pipe.
Abstract:
A thermo-isolating jacket for a magnetic resonance device (MRD). The thermo-isolating jacket is configured to be positioned in an atmospheric pressure, temperature changing environment. The thermo-isolating jacket provides a passive temperature insulating device to be placed on the outer side of the MRD. The thermo-isolating jacket insulates the MRD from external environment temperature fluctuations during its operation.
Abstract:
A method of detecting a target biochemical molecular species or at least one property correlated with the occurrence of the biochemical molecular species in a sample whose main component is water. The method includes: obtaining a sample whose main component is water; providing Functionalized Paramagnetic Particles (FPP) including a paramagnetic core and a moiety configured to interact with the target biochemical molecular species or with molecules collectively reporting on a property of the target biochemical molecular species; contacting the FPP with the sample; exposing the sample to an applied magnetic field; measuring a change in a nuclear relaxation property of the sample; and correlating the change to the presence of the biochemical molecular species in the sample or to at least one property correlated with the occurrence of the biochemical molecular species in the sample.
Abstract:
A method of operating a magnetic resonance imaging (MRI) device for habituating a patient and/or user to acoustic-noise of the device's operation. The method includes: listing a required set of the pulse-sequences (RSPS) for the patient, modifying the RSPS to a new set of sequences (NSPS) further comprising at least one demo-sequence, and operating, by means of generating the pulse-sequences, according to the NSPS. The demo-sequence is a redundant sequence, used solely for acoustic-sound habituation, while the originally listed RSPS are used for medical readings, thereby habituating the patient and/or user to the acoustic-noise of the operation.
Abstract:
A ramrod for cleaning the bore of an MRI device, including: a head with a cross-section substantially identical in shape to the MRI bore's cross-section, the cross section having size slightly smaller than the MRI's bore's cross-section to fit snugly and movably within the bore, the head having at least one end, the head having a longitudinal axis; and a rigid extended longitudinal body rigidly connected to the at least one end, the body having a longitudinal axis. The passage of the ramrod through the bore removes particulates from the bore.
Abstract:
A system for MRI imaging the near surface of tissue specimens wherein the volume of interest of the MRI is held substantially within the surface-proximate tissue of the specimen by means of some combination of maneuvering the specimen, maneuvering the MRI RF magnetic field magnet, maneuvering the MRI RF receiver coil, maneuvering the static field magnets, and reshaping the tissue.
Abstract:
An animal handling system for use in an MRD device, including: a first elongated enclosure having a proximal end, a distal open end and a first geometry, and a second first elongated enclosure having a proximal end, a distal open end and a second geometry. The first second geometry comprises a first cross-sectional area which is larger than a second cross-sectional area of the second geometry. The first elongated enclosure is inserted into a first input port of the MRD device and the second elongated enclosure is inserted in a second input port of the MRD device diametrically opposite to second input port, such that on insertion of the first elongated enclosure into the first input port and insertion of the second elongated enclosure into the second input, the second elongated enclosure slides into the first elongated enclosure through the open distal end of the first elongated enclosure.