Abstract:
An optical storage apparatus includes an optical pickup head, a drive module, a spherical aberration compensator, and a controller module. The drive module is coupled to the optical pickup head for performing a predetermined operation associated with the optical pickup head. The spherical aberration compensator is coupled to the optical pickup head for performing a spherical aberration compensation upon the optical pickup head. The controller module is coupled to the drive module and the spherical aberration compensator for controlling the drive module to perform the predetermined operation during a first period of time and the spherical aberration compensator to perform the spherical aberration compensation during a second period of time. The first period of time overlaps the second period of time.
Abstract:
Roughly described, a network interface device receiving data packets from a computing device for transmission onto a network, the data packets having a certain characteristic, transmits the packet only if the sending queue has authority to send packets having that characteristic. The data packet characteristics can include transport protocol number, source and destination port numbers, source and destination IP addresses, for example. Authorizations can be programmed into the NIC by a kernel routine upon establishment of the transmit queue, based on the privilege level of the process for which the queue is being established. In this way, a user process can use an untrusted user-level protocol stack to initiate data transmission onto the network, while the NIC protects the remainder of the system or network from certain kinds of compromise.
Abstract:
Method for managing a queue in host memory for use with a peripheral device. Roughly described, the host makes a determination of the availability of space in the queue for writing new entries, in dependence upon historical knowledge of the number of queue entries that the host has authorized the device to write, and the number of entries that the host has consumed. In dependence on that determination, the host authorizes the device to write a limited number of new entries into the queue. The device writes entries into the queue dependence upon the number authorized. The host maintains a read pointer into the queue but does not need to maintain a write pointer, and the peripheral device maintains a write pointer into the queue but does not need to maintain a read pointer.
Abstract:
A method for manufacturing a patterned thin-film layer includes the steps of: providing a substrate with a plurality of banks thereon, the plurality of banks defining a plurality of spaces; providing an ink-jet device comprising a plurality of nozzles for depositing ink therefrom; generating a jetting information about ink volume that each of the nozzles deposits into the respective spaces by a random method, the jetting information meeting ink volume deposited into each of the spaces is in a range from about 92.5% to about 107.5% of an average volume of ink in the spaces; making the nozzles to deposit ink into the respective spaces according to the jetting information; and solidifying the ink so as to form a plurality of patterned thin-film layers formed in the spaces.
Abstract:
An liquid crystal method, system and method is provided to optimize the view-angle distribution characteristics of 2D/3D LCDs, wherein the photoactive layers, e.g., parallax, lenticular, etc, have their individual respective distances adjusted. The method also permits the adjustment of the relative prism vertex angles among the photoactive layers to further control the view-angle distribution of the light transmitted to the LDC display means. Moreover, the method, system and method provides for the enhanced, as modified by or in accordance with and as a function of both, scope and distance of human vision and vantage point in 2D/3D LCDs.
Abstract translation:提供了一种液晶方法,系统和方法来优化2D / 3D LCD的视角分布特性,其中诸如视差,透镜等的光活性层具有各自的各自的距离。 该方法还允许调节光敏层之间的相对棱镜顶角,以进一步控制透射到LDC显示装置的光的视角分布。 此外,该方法,系统和方法提供了在2D / 3D LCD中由人类视觉和有利位置的范围和距离进行修改或者根据和作为功能的增强。
Abstract:
A digital video acquisition system including a plurality of image processors (30A; 30B) is disclosed. A CCD imager (22) presents video image data on a bus (video_in) in the form of digital video data, arranged in a sequence of frames. A master image processor (30A) captures and encodes a first group of frames, and instructs a slave image processor (30B) to capture and encode a second group of frames presented by the CCD imager (22) before the encoding of the first group of frames is completed by the master image processor. The master image processor (30A) completes its encoding, and is then available to capture and encode another group of frames in the sequence. Video frames that are encoded by the slave image processor (30B) are transferred to the master image processor (30A), which sequences and stores the transferred encoded frames and also those frames that it encodes in a memory (36A; 38). The parameters of the encoding operation can be dynamically adjusted, for example in response to the nature of the video sequences being captured.
Abstract:
An optical proximity correction photomask comprises a transparent substrate, a main feature having a first transmitivity disposed on the transparent substrate and at least one assist feature having a second transmitivity disposed to each side of the main feature and on the transparent substrate, wherein the first transmitivity is not equal to the second transmitivity.
Abstract:
A method is disclosed for forming a photoresist pattern with enhanced etch resistance on a semiconductor substrate. A photoresist pattern is first formed on the substrate. A silicon-containing polymer layer is deposited over the photoresist pattern on the substrate. A thermal treatment is performed to form a cross-linked anti-etch shielding layer between the photoresist pattern and the silicon-containing layer. Then, the remaining silicon containing layer is removed. A plasma treatment is performed in order to increase an etch resistance of the cross-linked anti-etch shielding layer and the photoresist pattern.
Abstract:
The present invention includes a lithography method comprising forming a first patterned resist layer including at least one opening therein over a substrate. A protective layer is formed on the first patterned resist layer and the substrate whereby a reaction occurs at the interface between the first patterned resist layer and the protective layer to form a reaction layer over the first patterned resist layer. The non-reacted protective layer is then removed. Thereafter, a second patterned resist layer is formed over the substrate, wherein at least one portion of the second patterned resist layer is disposed within the at least one opening of the first patterned resist layer. The substrate is thereafter etched using the first and second patterned resist layers as a mask.
Abstract:
A method for manufacturing a patterned layer (106) on a substrate (100) includes the following steps: providing a substrate having a plurality of banks (102) formed thereon, the substrate and the banks cooperatively defining a plurality of accommodating spaces (104), wherein each of the accommodating spaces has a first edge (110) and a second edge (112) parallel to the first edge, a distance between the first edge and the second edge is b; the first nozzle (302) moving along a first path (306), and the first path is parallel to the first edge, a distance between the first path and the first edge is a; the first nozzle jetting ink into the accommodating space; the second nozzle (304) moving along a second path (310), a distance between the first path and the second path is c, and the distance c satisfies one of the two equations: 0