Abstract:
A shroud assembly is provided for a gas turbine engine having a temperature at a hot operating condition substantially greater than at a cold assembly condition thereof. The shroud assembly includes at least one arcuate shroud segment adapted to surround a row of rotating turbine blades. The shroud segment has an arcuate, axially extending mounting flange. A shroud hanger includes an arcuate, axially-extending hook. A dimension of one of the shroud segments and the shroud hanger are selected to produce a preselected dimensional relationship therebetween at the hot operating condition.
Abstract:
Methods for optimizing at least one operating parameter of an engine component using an experimentally measured 3D flow field involving providing a magnetic resonance imaging machine, providing a model of an engine component, placing the model into the magnetic resonance imaging machine with a fluid flow source for applying an external fluid flow, applying the external fluid flow to the model, collecting data related to the external fluid flow about the model, and optimizing at least one operating parameter of the component using the data.
Abstract:
A C-clip for a gas turbine engine includes an arcuate outer arm having a first radius of curvature; an arcuate, inner arm having a second radius of curvature which is substantially greater than the first radius of curvature; and an arcuate extending flange connecting the outer and inner arms. The flange, the outer arm, and the inner arm collectively define a generally C-shaped cross-section. A shroud assembly includes a shroud segment with a mounting flange, and a shroud hanger with an arcuate hook disposed in mating relationship to the mounting flange. An arcuate C-clip having inner and outer arms overlaps the hook and the mounting flange. The shroud segment and the C-clip are subject to thermal expansion at the hot operating condition. A dimension of one of the shroud segment and the C-clip are selected to produce a preselected dimensional relationship therebetween at the hot operating condition.
Abstract:
A method for cooling a shroud segment of a gas turbine engine is provided. The method includes providing a turbine shroud assembly including a shroud segment having an inner surface and a leading edge that is substantially perpendicular to the inner surface, and coupling a turbine nozzle to the turbine shroud segment such that a gap is defined between an aft edge of an outer band of the turbine nozzle and the leading edge. The method also includes directing cooling air into the gap, circumferentially mixing the cooling air in a plenum defined within the leading edge to substantially uniformly distribute the cooling air throughout the gap, and directing the cooling air in the gap through at least one cooling hole formed between the plenum and the inner surface.
Abstract:
A stator vane that may be used in an engine assembly is provided. The stator vane includes an airfoil that has a first sidewall and a second sidewall, which connects to the first sidewall at a leading edge and at a trailing edge. The airfoil also includes a root portion and a tip portion. The first and second sidewalls both extend from the root portion to the tip portion. The airfoil root portion is formed with a negative lean, and the airfoil tip portion is formed with a positive lean.
Abstract:
A turbine stage includes a stator nozzle having a row of vanes mounted between inner and outer bands. The inner band terminates in an ovate ledge converging aft from the vanes with radially outer and inner convex surfaces joined at a convex apex. The ovate ledge reduces aerodynamic losses at the rotary seal with a row of following turbine rotor blades.
Abstract:
Disclosed herein is a method comprising injecting into a thin wall disposable core die a slurry having a viscosity of about 1 to about 1,000 Pascal-seconds at room temperature when tested at a shear rate of up to 70 seconds−1 and a flow index of less than 0.6 at a pressure of up to about 7 kilograms-force per square centimeter; wherein the thin wall disposable core die has an average wall thickness of about 1.5 to about 10 millimeters; curing the slurry to form a cured ceramic core; removing the thin wall disposable core die from the cured ceramic core; and firing the cured ceramic core to form a solidified ceramic core.
Abstract:
Disclosed herein is a method comprising disposing a casting composition within a sacrificial die; wherein internal features of the sacrificial die provide a replica of a desired casting; wherein the casting composition has a viscosity of about 1 to about 1,000 Pascal-seconds at room temperature when tested at a shear rate of up to 70 seconds−1; reacting the casting composition to form a gel matrix; removing the sacrificial die; extracting a solvent from the gel matrix to form a dried gel; and firing the dried gel to form a ceramic core. Disclosed herein too is a casting composition comprising a monomer and/or a polymer; and a metal and/or ceramic powder; wherein the casting composition has a viscosity of about 1 to about 1,000 Pascal-seconds at room temperature when tested at a shear rate of up to 70 seconds−1 and a flow index of less than 0.6.
Abstract:
A method for cooling a shroud segment of a gas turbine engine includes providing a turbine shroud assembly including a shroud segment having a leading edge defining a forward face. A turbine nozzle is coupled to the turbine shroud assembly such that a gap is defined between an aft face of an outer band of the turbine nozzle and the forward face, wherein a lip formed on the aft face is positioned radially inwardly with respect to the gap and extends substantially axially downstream from the gap. Cooling air is directed into the gap. Cooling air exiting the gap impinges against the lip. Post impingement cooling air is directed at the forward face to facilitate forming a film cooling layer on the shroud segment. The film cooling layer is shielded from combustion gases flowing through the gas turbine engine.
Abstract:
An upstream plasma boundary layer shielding system includes film cooling apertures disposed through a wall having cold and hot surfaces and angled in a downstream direction from a cold surface of the wall to an outer hot surface of the wall. A plasma generator located upstream of the film cooling apertures is used for producing a plasma extending downstream over the film cooling apertures. Each plasma generator includes inner and outer electrodes separated by a dielectric material disposed within a groove in the outer hot surface. The wall may be part of a hollow airfoil or an annular combustor or exhaust liner. A method for operating the upstream plasma boundary layer shielding system includes forming a plasma extending in the downstream direction over the film cooling apertures along the outer hot surface of the wall. The method may further include operating the plasma generator in steady state or unsteady modes.