Abstract:
A corona ignition system including a corona igniter, switches, and a programmable controller capable of rapidly adjusting to changes in resonant frequency is provided. Energy at a drive frequency and an output current is provided to the corona igniter. Switches provide energy to the corona igniter at the drive frequency and are activated at different times. The controller obtains the output current provided to the corona igniter, typically once every half cycle, and activates the first switch a predetermined amount of time after a first zero crossing of the output current, wherein the first zero crossing is a zero crossing of the most recent full cycle of the output current. The second switch is activated a predetermined amount of time after a second zero crossing occurring after the first zero crossing. The delay of the system is accounted for by the controller, rather than other components.
Abstract:
A spark plug has a metal shell, an insulator, a center electrode, and a ground electrode. One or more firing tips can be attached to the center electrode, to the ground electrode, or to both electrodes. The metal shell and ground electrode are attached together by way of one or more laser keyhole welds at an interface of the shell and electrode. Before the laser keyhole welds, resistance welding can be executed for a temporary attachment.
Abstract:
A spark plug has a shell, an insulator, a center electrode, a ground electrode, and a firing pad. The firing pad is made of a precious metal material and is attached to the ground electrode. The firing pad has a side surface at a peripheral edge that can be flush or nearly flush with a free end surface of the ground electrode. This construction can help improve ignitability and flame kernel growth of the spark plug during a sparking event, and can provide better thermal management at the attached ground electrode and firing pad.
Abstract:
A method of manufacturing an electrode material for use in spark plugs and other ignition devices. The electrode material may be manufactured into a desirable form by hot-forming a layered structure that includes a ruthenium-based material core, an iridium-based interlayer disposed over an exterior surface of the ruthenium-based material core, and a nickel-based cladding disposed over an exterior surface of the iridium-based material interlayer. The elongated layered wire produced by the hot-forming then has its nickel-based cladding removed to derive an elongated electrode material wire that includes the ruthenium-based material core encased in the iridium-based material. The elongated electrode material wire can be used to make many different spark plug/ignition device components.
Abstract:
A capacitive discharge welding method is used to join firing tips, such as those made from various precious metals, to spark plug electrodes. In one embodiment, charged capacitors or other energy storage devices coupled to welding electrodes quickly release stored energy so that a peak weld power and maximum interface temperature is quickly established, followed by a rapid decline in weld power and interface temperature. The resulting capacitive discharge weld joint may include solidified molten material from both the firing tip and the electrode and possess a number of other desirable qualities.
Abstract:
A method for making an extruded insulator for a spark plug in a manner that minimizes pores, relics and/or other defects in the insulator microstructure so that the overall dielectric strength or performance of the insulator is improved. The method may be used to manufacture an extruded insulator that avoids many of the drawbacks associated with such defects, but also has a stepped internal bore for receiving a center electrode. In one embodiment, the method uses a multi-phase extrusion process to extrude a ceramic paste around an elongated arbor and form an extruded section, and then removes the arbor from the extruded section to reveal a stepped internal bore.
Abstract:
A spark plug has a firing pad attached to a center electrode or a ground electrode by way of a fused portion. In one or more embodiments, the firing pad is composed of a precious metal material. The fused portion can be formed in such a way that a material composition thereof at a sparking surface of the firing pad has a greater percentage of the precious metal material than a material of the underlying electrode to which the firing pad is attached.
Abstract:
A method of making an electrode material for use in spark plugs and other ignition devices including industrial plugs, aviation igniters, glow plugs, or any other device that is used to ignite an air/fuel mixture in an engine. The electrode material is a ruthenium-based material that includes ruthenium as the single largest constituent. The disclosed method includes hot-forming a layered structure that includes a ruthenium-based material core, an interlayer having a refractory metal disposed over the ruthenium-based material core, and a nickel-based cladding disposed over the interlayer.
Abstract:
A spark plug has a firing pad attached to a center electrode or to a ground electrode. The firing pad is attached via laser welding and has a sparking surface with an overall fused area and an unfused area. In one or more embodiments, the overall fused area is located in part or more inboard of a peripheral edge of the firing pad.
Abstract:
A spark ignition device includes a ceramic insulator with a metal shell surrounding at least a portion of the ceramic insulator. A ground electrode is attached to the shell. The ground electrode has a ground electrode sparking tip spaced from a central sparking tip by a spark gap. A first terminal is arranged in electrical communication with the central sparking tip and is configured for electrical connection with a power source. The device further includes a second terminal configured for electrical connection with the power source. The second terminal is spaced from the first terminal, with the second terminal being arranged in electrical communication with the first terminal. A heater element brings the first terminal in electrical communication with the second terminal and completes an electrical circuit. The heater element has a resistance greater than the first and second terminals thereby producing a significant source of heat.