Abstract:
A feed charging device comprises a holding vessel having an interior chamber for holding a reserve of a solid particulate feed material in a fluidized state, wherein the feed material is held in said fluidized state in a lower zone of the interior chamber. The feed material is supplied to the interior chamber through at least one outlet opening, and is discharged from the interior chamber through at least one outlet opening. The at least one outlet opening is in flow communication with the lower zone of the interior chamber. A gas supply means supplies a fluidizing gas to the lower zone of the interior chamber, and an outlet conduit in flow communication with the at least one outlet opening receives said feed material discharged from the interior chamber.
Abstract:
A chill mold is used to cool molten material to form a casting. A support holds the chill mold so that a bottom of the chill mold is elevated. A baffle is arranged to divert a generally horizontal flow of cooling air upwardly to impinge the bottom of the chill mold. A plurality of chill molds may be aligned generally in a row, and at least one fan may be arranged at an end of the row to direct the flow of cooling air underneath the chill molds. The size and the vertical position of the baffles may be varied along the row, so as to generally equalize convective cooling rates among the chill molds in the row.
Abstract:
An uptake apparatus is arranged to extract a stream of off-gas containing carbon monoxide from a process vessel. At least one gas conditioning train receives and conditions the stream. An outlet expels at least a portion of the stream. A portion of the stream is separated to form a recycle stream. An eductor apparatus combines the stream with the recycle stream, to decrease the temperature and increase the static pressure of the stream. The stream is maintained at a positive gauge pressure.
Abstract:
A process for generating a metal sulfate that involves crystallizing a metal sulfate from an aqueous solution to form a crystallized metal sulfate in a mother liquor with uncrystallized metal sulfate remaining in the mother liquor; separating the crystallized metal sulfate from the mother liquor; basifying a portion of the mother liquor to convert the uncrystallized metal sulfate to a basic metal salt; and using the basic metal salt upstream of crystallizing the metal sulfate. So crystallized, the generated metal sulfate may be battery-grade or electroplating-grade.
Abstract:
Processes and methods for refining ferronickel alloy, and producing nickel sulfate or other nickel product, are provided, where the ferronickel alloy is treated with an oxidizing leach. The oxidizing leach may be, for example, a pressure oxidation (POX) leach or a leach with peroxide or copper (II) ions. The treatment may be in the presence of added copper, such as by providing a copper sulfate solution. Producing nickel sulfate may comprise removing copper and iron after the leach, removing impurities, and either crystallizing the nickel sulfate or precipitating/winning another nickel product.
Abstract:
A process and method for producing a crystallized metal sulfate. The crystallized metal sulfate may be battery-grade. The method may comprise receiving a metal ion-containing stream and crystalizing a metal sulfate from the stream. The process may comprise receiving a stream from a metal processing plant, and crystalizing a metal sulfate from the stream. The process may be a metal electrowinning process comprising crystalizing a metal ion-containing stream to form a crystallized metal sulfate in a mother liquor. The process or method may comprise returning the mother liquor upstream or to the metal electrowinning process.
Abstract:
A system and method for affecting the crossbow in a metal sheet in continuous coating process. The system comprises strip distance sensors for determining distances to the metal sheet. A controller is configured to adjust the position of the correcting roll, based on the strip distances, to affect the crossbow in the sheet to help control the thickness of the coating on the sheet. The system may comprise a crossbow model to help determine the new correcting roll position. The distances determined by the strip distance sensors may be also be used to adjust the position of the air knives.
Abstract:
A flexible electrical connector assembly is adapted to connect a bus bar of an electrolytic cell to a collector bar of the electrolytic cell. The assembly includes an electrical connector including a plurality of conductive metal sheets, the electrical connector having a collector bar end and a bus bar end. The electrical connector may be adapted for being joined, at the collector bar end, to the collector bar and, at the bus bar end, to the bus bar. The electrical connector may be adapted to implement a change in direction, at a bend along a current-carrying path between the bus bar end and the collector bar end, the bend assisting to define the change in direction as greater than 90 degrees.
Abstract:
A reactor comprises an outer sidewall and a bottom wall enclosing a hollow chamber comprising a lower fluidized bed zone and an upper freeboard zone. A plurality of inlets is provided for injecting at least one fluidizing medium into the fluidized bed zone and creating a swirling flow. At least one feed inlet communicates with the fluidized bed zone; and at least one product outlet is provided for removing a product from the chamber, the outlet(s) communicating with either the fluidized bed zone or the freeboard zone. The reactor has at least one internal barrier located inside the hollow chamber, and at least partly located in the fluidized bed zone. The internal barrier(s) have at least one opening within the fluidized bed zone, such as an underflow opening, to permit internal recirculation of material from the product zone to the feed zone, thereby simplifying reactor structure.
Abstract:
A process for preparing solid slag granules from a molten slag composition comprises: (a) providing the molten slag composition; (b) converting the molten slag composition into the solid slag granules in a dispersion apparatus; and (c) sorting the solid slag granules by shape in a separator to produce a plurality of fractions having different sphericities. Granular slag products comprise one or more fractions of solid slag granules produced by the process, and include proppants, roofing granules, catalyst supports, which may be porous or non-porous, and coated or uncoated.