Abstract:
An antenna steering algorithm for a smart antenna uses signal quality metrics and link quality metrics for selecting a preferred antenna beam. The link quality metrics supplement the signal quality metrics for improving the antenna steering decision. The link quality metrics are based on information available from existing counters operating in the media access control (MAC) layer. Separate estimates of the frame error rates in the receive links and in the transmit links are obtained. One estimate is the downlink quality metric (DLQM) and another estimate is the uplink quality metric (ULQM). Alternative link quality metrics are based on throughput and data rates of the exchanged data.
Abstract:
The present invention relates to secret key generation and authentication methods that are based on joint randomness not shared by others (JRNSO), in which unique channel response between two communication terminals generates a secret key. Multiple network access points use a unique physical location of a receiving station to increase user data security. High data rate communication data is encrypted by generating a random key and a pseudo-random bit stream. A configurable interleaving is achieved by introduction of JRNSO bits to an encoder used for error-correction codes. Databases of user data are also protected by JRNSO-based key mechanisms. Additional random qualities are induced on the joint channel using MIMO eigen-beamforming, antenna array deflection, polarization selection, pattern deformation, and path selection by beamforming or time correlation. Gesturing induces randomness according to uniquely random patterns of a human user's arm movements inflected to the user device.
Abstract:
An apparatus and a method for improving packet transmission and reducing latency in VoIP over WLAN using switched beam antennas having multiple directional antenna beams are disclosed. In an access point having a switched beam antenna, or other smart antenna system, the present invention extends the coverage area of an access point for authentication and association of a new WTRU, extends the access points coverage area during in session transmissions with a WTRU, and adjusts data rates. The method also controls Contention Period (CP)/Contention Free Period (CFP) timing amongst beams emanating from an access point having a switched beam antenna, or other smart antenna system. Fast diversity switching, frame level switching, lowered data rates, and scanning multiple directional antenna beams for the optimum transmission beam are disclosed to improve beam selection and packet transmission.
Abstract:
A method for taking measurements with a smart antenna in a wireless communication system having a plurality of STAs begins by sending a measurement request from a first STA to a second STA. At least two measurement packets are transmitted consecutively from the second STA to the first STA. Each measurement packet is received at the first STA using a different antenna beam. The first STA performs measurements on each measurement packet and selects an antenna beam direction based on the measurement results.
Abstract:
Disclosed herein are methods and devices for sharing a packet data protocol (PDP) context among a plurality of devices. For example, a method or sharing a PDP context among a plurality of devices may include a wireless transmit/receive unit (WTRU) sending a request to establish or modify a PDP context. The request to establish or modify the PDP context may include an indication that the WTRU is a member of shared context group. The method may also include the WTRU receiving a response indicating that the request to establish or modify the PDP context was accepted. The method may also include the WTRU acting as a gateway for at least one other device in the shared context group. The request to establish or modify the PDP context may be an attach request. The indication that the WTRU is a member of shared context group may be a group identifier (ID).
Abstract:
A constrained network entity may determine, via an authentication procedure with a core network entity, the trustworthiness of an endpoint attempting to establish a secure channel with the constrained network entity. The constrained network entity may receive a certificate from the endpoint attempting to establish the secure channel and the constrained network entity may send the certificate asserted by the endpoint to a core network entity for validation. The core network entity may receive the certificate during a key exchange with the constrained network entity and the core network entity may indicate to the constrained network entity the validity of the certificate. The constrained network entity may determine whether to establish the secure channel with the endpoint based on the validity of the certificate.
Abstract:
An apparatus and method for providing home evolved node-B (H(e)NB) integrity verification and validation using autonomous validation and semi-autonomous validation is disclosed herein.
Abstract:
Systems, methods, and apparatus are provided for generating verification data that may be used for validation of a wireless transmit-receive unit (WTRU). The verification data may be generated using a tree structure having protected registers, represented as root nodes, and component measurements, represented as leaf nodes. The verification data may be used to validate the WTRU. The validation may be performed using split-validation, which is a form of validation described that distributes validation tasks between two or more network entities. Subtree certification is also described, wherein a subtree of the tree structure may be certified by a third party.
Abstract:
Wireless telecommunications networks may implement various forms of authentication. There are a variety of different user and device authentication protocols that follow a similar network architecture, involving various network entities such as a user equipment (UE), a service provider (SP), and an authentication endpoint (AEP). To select an acceptable authentication protocol or credential for authenticating a user or UE, authentication protocol negotiations may take place between various network entities. For example, negotiations may take place in networks implementing a single-sign on (SSO) architecture and/or networks implementing a Generic Bootstrapping Architecture (GBA).
Abstract:
Integrity validation of a network device may be performed. A network device comprising a secure hardware module, may receive a root key. The secure hardware module may also receive a first code measurement. The secure hardware module may provide a first key based on the root key and the first code measurement. The secure hardware module may receive a second code measurement and provide a second key based on the first key and the second code measurement. The release of keys based on code measurements may provide authentication in stages.