Abstract:
A relaxed metal pitch architecture may include a bit line and a first active area string and a second active area string. The bit line may be directly coupled to the first active area string and to the second active area string. The relaxed metal pitch architecture may be applied to a non-volatile memory structure.
Abstract:
Some embodiments include a memory device and methods of forming the same. The memory device can include an electrode coupled to a memory element. The electrode can include different materials located at different portions of the electrode. The materials can create different dielectrics contacting the memory elements at different locations. Various states of the materials in the memory device can be used to represent stored information. Other embodiments are described.
Abstract:
Memory devices utilizing memory cells including a resistive element and a diode coupled in series between two conductors. The diodes include a ruthenium material and a silicon material. The diodes further include an interface on the silicon material of ruthenium or ruthenium silicide. A ruthenium silicide interface may be a polycrystalline ruthenium silicide.
Abstract:
A method of fabricating a memory cell including forming nanodots over a first dielectric layer and forming a second dielectric layer over the nanodots, where the second dielectric layer encases the nanodots. In addition, an intergate dielectric layer is formed over the second dielectric layer. To form sidewalls of the memory cell, a portion of the intergate dielectric layer and a portion of the second dielectric layer are removed with a dry etch, where the sidewalls include a location where a nanodot has been deposited. A spacing layer is formed over the sidewalls to cover the location where a nanodot has been deposited and the remaining portion of the second dielectric layer and the nanodots can be removed with an isotropic etch selective to the second dielectric layer.
Abstract:
Memory cells including a control gate, a charge trapping material, and a charge blocking material between the control gate and the charge trapping material. The charge blocking material is configured to allow for erasure of the memory cell by enhanced F-N tunneling of holes from the control gate to the charge trapping material.
Abstract:
Non-volatile memory devices and arrays are described that facilitate the use of band-gap engineered gate stacks with asymmetric tunnel barriers in floating gate memory cells in NOR or NAND memory architectures that allow for direct tunneling programming and erase with electrons and holes, while maintaining high charge blocking barriers and deep carrier trapping sites for good charge retention. The direct tunneling program and erase capability reduces damage to the gate stack and the crystal lattice from high energy carriers, reducing write fatigue and leakage issues and enhancing device lifespan. Memory cells of the present invention also allow multiple bit storage in a single memory cell, and allow for programming and erase with reduced voltages. A positive voltage erase process via hole tunneling is also provided.
Abstract:
A method of forming a memory transistor includes providing a substrate comprising semiconductive material and forming spaced-apart source/drain structures. At least one of the source/drain structures forms a Schottky contact to the semiconductive material. The method also includes forming a memory gate between the spaced-apart source/drain structures and forming a control gate disposed operatively over the memory gate.
Abstract:
A method of fabricating a memory cell including forming nanodots over a first dielectric layer and forming a second dielectric layer over the nanodots, where the second dielectric layer encases the nanodots. In addition, an intergate dielectric layer is formed over the second dielectric layer. To form sidewalls of the memory cell, a portion of the intergate dielectric layer and a portion of the second dielectric layer are removed with a dry etch, where the sidewalls include a location where a nanodot has been deposited. A spacing layer is formed over the sidewalls to cover the location where a nanodot has been deposited and the remaining portion of the second dielectric layer and the nanodots can be removed with an isotropic etch selective to the second dielectric layer.
Abstract:
A relaxed metal pitch architecture may include a bit line and a first active area string and a second active area string. The bit line may be directly coupled to the first active area string and to the second active area string. The relaxed metal pitch architecture may be applied to a non-volatile memory structure.
Abstract:
Some embodiments include methods of forming flash memory cells and semiconductor constructions, and some embodiments include semiconductor constructions. Some embodiments may include a method in which a semiconductor substrate is provided to have a plurality of active area locations. Floating gates are formed over the active area locations, with the floating gates having widths that are entirely sub-lithographic. Adjacent floating gates are spaced from one another by gaps. Dielectric material and control gate material are formed over the floating gates and within the gaps. Some embodiments may include a construction in which a pair of adjacent floating gates are over a pair of adjacent active areas, with the floating gates being spaced from one another by a distance which is greater than a distance that the active areas are spaced from one another.