Abstract:
A transportation and storage system for at least two wind turbine blades include a first wind turbine blade and a second wind turbine blade is described. The wind turbine blades each have a root end and a tip end. The system includes a packaging system adapted to place the first wind turbine blade so that the tip end of the first wind turbine blade points in a first direction, with the tip end of the second wind turbine blade pointing in a second direction, which is substantially opposite to the first direction. The tip end of the second wind turbine blade extends beyond the root end of the first wind turbine blade, and the tip end of the first wind turbine blade extends beyond the root end of the second wind turbine blade, when the first and the second wind turbine blades are arranged in the packaging system.
Abstract:
A method for the calculation of a wind turbine blade deflection is described. The method utilises a known blade modal profile in the calculation of the blade deflection, such that the a priori knowledge of the blade excitation modes can be used with a simple distance measurement to determine the blade deflection shape. The calculated blade deflection can then be used as an input to control wind turbine operation, e.g. where it is likely that the deflected blade might result in a tower strike.
Abstract:
A flexible aeroshell extender piece for an inboard part of a wind turbine blade is described, along with an associated method of manufacture. The flexible aeroshell is formed by first assembling a consolidated aeroshell piece, and then making a series of slits at the trailing edge of the aeroshell piece. Such a construction provides an aeroshell having a relatively flexible trailing edge section, which allows for bending or flexing of the aeroshell trailing edge during wind turbine blade operation.
Abstract:
A blade support cradle is described, which can be used to support a section of a wind turbine blade using an array of vacuum clamps. The cradle provides a secure and reliable system for the support of a blade section during and after blade manufacture, allowing for various operations to be easily carried out on the surface of the blade section. A method for receiving a blade section in the cradle is further described. In addition, the cradle may be used as part of a blade post-molding station in a method of manufacturing a wind turbine blade.
Abstract:
A wind turbine blade is described, as well as a trailing edge plate for a wind turbine blade. A flexible flow modulation device, e.g. an acoustic flap or a plurality of serrations, is arranged at the trailing edge of a wind turbine blade, wherein the flexible device is coupled to at least one aerodynamic device, preferably vortex generators. As the flexible device is bent by action of flow over the wind turbine blade, the at least one aerodynamic device is deployed to provide for attached flow over the bent flexible device.
Abstract:
A wind turbine blade is described having a lightning protection system, wherein the lightning protection system is arranged to protect conductive elements or modules used in or on the blade. In one aspect, the lightning protection system comprises a conductive band to be arranged around the circumference of the blade at the location of an internal conductive module, to prevent a lightning strike from penetrating the blade and potentially damaging the internal module. In another aspect, the lightning protection system comprises a lightning down-conductor having a signal-carrying structure, e.g. a signal cable, power cable, or a waveguide, integrated into the down-conductor. In a further aspect, the lightning protection system comprises at least one lightning receptor arranged to protect externally-mounted antennas from lightning strikes.
Abstract:
A rope for reinforcing joints in fibre-reinforced composite structures is described. The rope comprises chopped reinforcement fibres and retaining means for retaining the chopped fibres in a rope-shape. Further, composite structures utilising such ropes as filler elements are described as well as an apparatus for manufacturing such ropes.
Abstract:
A post-moulding station is described which is used in the manufacturing of a wind turbine blade. A blade shell forming part of a wind turbine blade is initially moulded in a blade mould, the blade shell subsequently transferred to a post-moulding station which allows for various post-moulding operations to be carried out on the blade shell away from the mould, thereby increasing the productivity of the blade mould in the manufacturing process. The post-moulding station may be operable to perform the closing of first and second blade shells to form a wind turbine blade, and may be formed from an adjustable structure which can provide relatively easy access to the contained blade shell for working thereon. Accordingly, the manufacturing equipment may be of reduced cost, combined with an increase in the overall productivity of the manufacturing system.
Abstract:
A method of retrofitting vortex generators on a wind turbine blade is disclosed, the wind turbine blade being mounted on a wind turbine hub and extending in a longitudinal direction and having a tip end and a root end, the wind turbine blade further comprising a profiled contour including a pressure side and a suction side, as well as a leading edge and a trailing edge with a chord having a chord length extending there between, the profiled contour, when being impacted by an incident airflow, generating a lift. The method comprises identifying a separation line on the suction side of the wind turbine blade, and mounting one or more vortex panels including a first vortex panel comprising at least one vortex generator on the suction side of the wind turbine blade between the separation line and the leading edge of the wind turbine blade.
Abstract:
A vortex generator device for a wind turbine blade, and a wind turbine blade is disclosed, the vortex generator device comprising a base with an inner side and an outer side, and a first fin protruding from the outer side and extending along a first fin axis, wherein the vortex generator device is a single-fin vortex generator device, and the base has a first edge part and a second edge part, the first edge part and the second edge part forming a primary angle in the range from 5 degrees to 60 degrees.