Abstract:
Methods and system are provided for controlling permanent magnet motor drive systems. The method comprises the steps of adjusting a first current command in response to a first voltage error to produce a first adjusted current, adjusting a second current command in response to a second voltage error to produce a second adjusted current, limiting each of the first and second adjusted current below a maximum current, converting the first adjusted current to a first potential, converting the second current command to a second potential, and supplying the first and second potentials to the permanent magnet motor. The first voltage error is derived from the second current command, and the second voltage error is derived from the first current command.
Abstract:
A method for controlling an electric machine having current sensors for less than every phase of the electric machine includes operating a processor to perform a test to preliminarily determine whether a fault exists in one or more of the current sensors and a test to finally determine that the fault exists in the one or more current sensors. The method further includes operating the processor to utilize a state observer of the electric machine to estimate states of the electric machine, wherein the state observer is provided state input measurements from each non-faulty current sensor, if any. Measurements from the current sensor or sensors determined to be faulty are disregarded. The processor controls the electric machine utilizing results from the state observer.
Abstract:
A control system for an electric motor having a stator and rotor including an inverter for providing power to the electric motor, a controller for controlling the inverter, a low speed control block to estimate the rotor angular position using stator current components operating in the controller, a high speed control block to estimate the rotor angular position using stator current components and stator flux position operating in the controller, a transition switch in the controller to vary operation between the low speed control block and the high speed control block, and where the inverter is controlled by six step operation.