Abstract:
A polygon-shaped air bag for use in vehicle restraint system is constructed from two panels of different sizes, each of which is in the form of an n-sided equiangular polygon, where n may be five or greater but is preferably six or eight. The panels are cut from a blank which is comprised of fabric or other suitable material, then superimposed in concentric relation onto one another with the perimeter portions of the larger panel folded and adhesively secured to the corresponding perimeter portions of the smaller panel for the purpose of distributing the stresses of inflation and impact across an area wider than the conventional equatorial seam and transferring such stresses into shearing, rather than tensile forces. In a preferred embodiment, the width of the overlapping panel portion is equal to the distance between an edge of the smaller panel and a corresponding parallel edge of the larger panel, where the panels are superimposed in concentric relation to one another.
Abstract:
A twelve-sided polygon-shaped air bag comprised of fabric for use in vehicle restraint systems and method of manufacture is disclosed. The air bag is constructed from fabric panels in the shape of congruent, twelve-sided polygons, which may be regular dodecagons or dodecagons having alternating short and long sides. The individual panels may be in the form of a single dodecagon, or in the form of two abutting dodecagons. The use of dodecagon-shaped panels allows for economical fabric utilization and increased fabrication efficiency, compared with panels having a circular shape.
Abstract:
An airbag construction utilizing welds, reinforced with sewn seams, to adhere two fabrics together to form an inflatable airbag cushion. Although welded seams provide better and more easily produced attachment points between multiple layers of fabrics, not to mention improved manners of reducing air or gas permeability at such attachment points, the utilization of sewn seams adjacent to such welded areas provides stronger reinforcement, and thus more reliable nonpermeable fabrics. Seam welding generally concerns the utilization of a film on the underside of a fabric which, upon contact with a second, film-treated fabric and upon exposure to high frequency energy, forms a bead of polymeric material at the attachment point between the two fabric layers. Lower numbers of sewn seams may be utilized to permit sufficient reinforcement if the size of the formed polymeric bead is of sufficient size to permit thorough sealing and adhesion between the fabric layers. Such a specific reinforced fabric, as well as high bead-size welded airbag fabrics are encompassed within this invention.
Abstract:
A polygon-shaped air bag comprised of fabric for use in vehicle restraint systems is disclosed. The air bag is constructed from fabric panels in the shape of congruent, n-sided equiangular polygons, where n may be between five and eleven, but is preferably six or eight. The individual panels may be in the form of a single polygon, or in the form of two abutting polygons. The use of polygon-shaped panels allows for economical fabric utilization and increased fabrication efficiency, compared with panels having a circular shape.
Abstract:
An airbag having at least two composite layers of fabric R.F. welded around the periphery thereof to form the bag and, which, when R.F. welded has excellent seam strength and a specific inflation strength less than 1.2.
Abstract:
The present invention relates to an airbag cushion which simultaneously exhibits a very low amount of fabric utilized to produce the target airbag cushion in correlation to an overall high amount of available inflation airspace within the cushion itself. These two correlative elements are now combined for the first time in what is defined as an effective fabric usage index (being the quotient of the amount of fabric utilized in the construction of the airbag cushion and the available inflation airspace volume). The inventive airbag cushion must possess an effective fabric usage factor of at most 0.0330. A cushion exhibiting such low seam usage and fabric usage factors and also comprising an integrated looped pocket for the disposition of an inflator can is also provided as well as an overall vehicle restraint system comprising the inventive airbag cushion.
Abstract:
A vehicle restraint system is provided which comprises an airbag into which an inflator can assembly may be placed. The inventive airbag preferably comprises two body panels, attached by one substantially straight seam, and a separator panel which, upon folding and attaching of the two body panel sections of the airbag produces a looped pocket for holding of the above-mentioned inflator can assembly. Such an article allows for quick and complete inflation upon release of propellant and facilitates packing in a standard restraint system enclosure. The invention thus encompasses both the restraint system and the airbag itself.
Abstract:
The present invention relates to a vehicle restraint system which comprises an airbag into which an inflator can assembly may be placed. The inventive airbag preferably comprises two body panels, attached by one substantially straight seam, and a separator panel which, upon folding and attaching of the two body panel sections of the airbag produces a mouth (looped pocket) for holding of the above-mentioned inflator can assembly. Such an article allows for quick and complete inflation upon release of propellant and facilitates packing in a standard restraint system enclosure. The invention thus encompasses both the restraint system and the airbag itself.
Abstract:
An elongated substantially rectangular nylon 6,6 air bag blank which allows an operator to produce a one piece air bag with four straight seams without undue manipulation during production thereof. The blank has notches in the two upper corners with an elongated notch centrally between the notches in the corners thereof in the long side of the blank.
Abstract:
The present invention relates to an airbag cushion which simultaneously exhibits a low amount of seam usage (in order to attach at least two fabric panels or portions of a single panel together) as well as a very low amount of fabric utilized to produce the target airbag cushion, both in correlation to an overall high amount of available inflation airspace within the cushion itself. These two separate, but correlated factors, one based on an effective seam usage index are now combined for the first time in what is defined as an effective seam usage index (being the quotient of the length of overall seams on the cushions and the available inflation airspace volume) and the other based on an effective fabric usage index (being the quotient of the amount of fabric utilized in the construciton of the airbag cushion and the available inflation airspace volume). The inventive airbag cushion must possess an effective seam usage factor of at most 0.11 and an effective fabric usage factor of at most 0.0330. A cushion exhibiting such low seam usage and fabric usage factors and also comprising an integrated looped pocket for the disposition of an inflator can is also provided as well as an overall vehicle restraint system comprising the inventive airbag cushion.