Abstract:
Embodiments of system and method for generating channel estimates in a wireless network are generally described herein. Other embodiments may be described and claimed. In some embodiments, a linear interpolator uses refined cross-correlation and autocorrelation estimates and pilot subcarrier estimates to generate channel estimates for the current OFDM data symbol.
Abstract:
In some embodiments, a femto access point comprises a baseband processor, an RF modulator/demodulator coupled to the baseband processor to modulate/demodulate data for communication within a predetermined frequency range, one or more antennas to coupled to the RF modulator/demodulator to transceive information with one or more wireless devices via a wireless communication link, and a control module to implement a femto transmission-free zone in at least one of a time domain or a frequency domain and in which the femto access point does not transmit data. Other embodiments may be described.
Abstract:
A novel soft fractional frequency reuse (FFR) technique is disclosed. The novel FFR technique includes reuse partition and power restriction, dynamic user grouping, channel quality indicator feedback based on reuse, and a user group-based interference aware scheduler. The FFR technique reduces co-channel interference for cell edge users.
Abstract:
An interference mitigation system randomizes transmissions to cell-edge users by carefully controlling the probability of transmission to these users, thereby creating a virtual fractional frequency system that does not require extensive frequency management and coordination across the network. In some embodiments, the interference mitigation system identifies severely interfered links and reduces the probability of transmission on these links, with the result being a reduced probability of interference.
Abstract:
Techniques are described that can be used to maximize the interference suppression capability of space-time coded systems by managing synchronous transmission signaling. To enhance the probability of the occurrence synchronous interference and accordingly increase interference cancellation capability at a receiver, a network of at least two transmitters in a network may utilize similar structured coding schemes and coordinate transmission so that the receiver receives co-channel signals synchronously.
Abstract:
Embodiments of apparatuses, articles, methods, and systems for predicting one or more performance metrics for an over-the-air link in the presence of co-channel interference are generally described herein. Other embodiments may be described and claimed.
Abstract:
Embodiments of system and method for generating channel estimates in a wireless network are generally described herein. Other embodiments may be described and claimed. In some embodiments, a linear interpolator uses refined cross-correlation and autocorrelation estimates and pilot subcarrier estimates to generate channel estimates for the current OFDM data symbol.
Abstract:
The present invention provides a method and system for receiving a plurality of transmission signals at a receiver, the transmission signals each traveling through a corresponding transmission channel. The receiver includes a plurality of receiver channels, a receiver channel corresponding to each transmission channel. Each receiver channel receives a corresponding transmission signal. The received transmission signals are detected to determine whether the received transmission signals are dominated by noise or interference. If the received transmission signals are dominated by noise, then a first set of weights are selected as a receiver weighting. If the received transmission signals are dominated by interference, then a second set of weights are selected as the receiver weighting. The received transmission signals are estimated based upon the receiver weighting. Detecting whether the received transmission signals are dominated by noise or interference includes determining a level of correlation between the received transmission signals. Detecting whether the received transmission signals are dominated by noise or interference can be determined during a time slot of nulled transmission signals. If the transmission signals are multiple carrier signals, then detecting whether the received transmission signals are dominated by noise or interference can be determined during a frequency and time slot of a nulled carrier of the transmission signals. The first set of weights can be based upon a first covariance matrix, wherein the first covariance matrix represents received noise and interference covariance. The second set of weights can be based upon the second covariance matrix, wherein the second covariance matrix represents interference covariance. The first set of weights and the second set of weights can also be used for transmission mode selection and receiver soft decoding.
Abstract:
The present invention provides a method and system for receiving a plurality of transmission signals at a receiver, the transmission signals each traveling through a corresponding transmission channel. The receiver includes a plurality of receiver channels, a receiver channel corresponding to each transmission channel. Each receiver channel receives a corresponding transmission signal. The received transmission signals are detected to determine whether the received transmission signals are dominated by noise or interference. If the received transmission signals are dominated by noise, then a first set of weights are selected as a receiver weighting. If the received transmission signals are dominated by interference, then a second set of weights are selected as the receiver weighting. The received transmission signals are estimated based upon the receiver weighting. Detecting whether the received transmission signals are dominated by noise or interference includes determining a level of correlation between the received transmission signals. Detecting whether the received transmission signals are dominated by noise or interference can be determined during a time slot of nulled transmission signals. If the transmission signals are multiple carrier signals, then detecting whether the received transmission signals are dominated by noise or interference can be determined during a frequency and time slot of a nulled carrier of the transmission signals. The first set of weights can be based upon a first covariance matrix, wherein the first covariance matrix represents received noise and interference covariance. The second set of weights can be based upon the second covariance matrix, wherein the second covariance matrix represents interference covariance. The first set of weights and the second set of weights can also be used for transmission mode selection and receiver soft decoding.
Abstract:
An ODS-CDMA communications system is disclosed with at least one hub station and a plurality of user terminals. Each user is assigned a code which is orthogonal to all of the other user codes. The orthogonal code period is chosen such that the code repeats an integer number of times in a data symbol time and the code is synchronized with the symbol transitions so that no data transitions occur within the code. Thus, the selection of an orthogonal code book which enables a high rate data to be spread using shorter code words, and conversely, low data rate to be spread using longer code words, all of which remain mutually orthogonal.